×

\(\Psi\)-series and obstructions to integrability of periodically perturbed one degree of freedom Hamiltonians. (English) Zbl 1037.70509

Summary: A connection between the \(\Psi\)-series local expansion of the solution of a perturbed system of ODEs and the evaluation of the Mel’nikov vector with the method of residues has recently been found by Goriely and Tabor. By following an analogous procedure, we find a straightforward relation between the failure of the compatibility condition of the Painlevé test and the absence of an analytic integral for periodically perturbed Hamiltonians whose unperturbed part does not necessarily possess a homoclinic loop. We apply these results to a periodically perturbed anharmonic oscillator.

MSC:

70H05 Hamilton’s equations
34A34 Nonlinear ordinary differential equations and systems
37J05 Relations of dynamical systems with symplectic geometry and topology (MSC2010)
70K40 Forced motions for nonlinear problems in mechanics
Full Text: DOI

References:

[1] Meletlidou, E.; Ichtiaroglou, S., Phys. Lett. A, 188, 157 (1994) · Zbl 0941.70510
[2] Goriely, A.; Tabor, M., Physica D, 85, 93 (1995) · Zbl 0894.58023
[3] Wiggins, S., Introduction to applied nonlinear systems and chaos (1990), Springer: Springer Berlin · Zbl 0701.58001
[4] Poincaré, H., (Goroff, D. L., New methods in celestial mechanics. New methods in celestial mechanics, Les méthodes nouvelles de la mécanique céleste, Vol. 1 (1993), Gauthier-Villars: Gauthier-Villars Paris, 1892), [English translation · JFM 24.1130.01
[5] Mel’nikov, V. K., Trans. Moscow Math. Soc., 12, 1 (1963) · Zbl 0135.31001
[6] Meletlidou, E.; Ichtiaroglou, S., Physica D, 71, 261 (1994) · Zbl 0804.58025
[7] Meletlidou, E.; Ichtiaroglou, S., J. Phys. A, 27, 3919 (1994) · Zbl 0842.70008
[8] Rothos, V. M., Study of two-degree-of freedom Hamiltonian systems around an elliptic fixed point in complex time, (Euroconference FIDDS95. Euroconference FIDDS95, Cambridge (1995))
[9] Bountis, T. C.; Rothos, V. M., Nonlinearity, 9, 877 (1996) · Zbl 0895.58021
[10] Hille, E., Ordinary differential equations in the complex domain (1976), Wiley: Wiley New York · Zbl 0343.34007
[11] Ablowitz, M. J.; Ramani, A.; Segur, H., J. Math. Phys., 21, 715 (1980) · Zbl 0445.35056
[12] Tabor, M., Chaos and integrability in nonlinear dynamics (1989), Wiley: Wiley New York · Zbl 0682.58003
[13] Tabor, M.; Weiss, J., Phys. Rev. A, 24, 2157 (1981)
[14] Levine, G.; Tabor, M., Physica D, 33, 189 (1989)
[15] Fournier, J. D.; Levine, G.; Tabor, M., J. Phys. A, 21, 33 (1988) · Zbl 0641.34034
[16] Chang, Y. F.; Greene, J. M.; Tabor, M.; Weiss, J., Physica D, 8, 183 (1983) · Zbl 0538.58031
[17] Melkonian, S.; Zypchen, A., Nonlinearity, 8, 1143 (1995) · Zbl 0840.34008
[18] Yakubovich, V. A.; Starzhinskii, V. M., (Linear differential equations with periodic coefficients, Vol. 1 (1975), Wiley: Wiley New York) · Zbl 0308.34001
[19] Davis, H. T., Introduction to nonlinear differential and integral equations (1962), Dover: Dover New York · Zbl 0106.28904
[20] Gradshteyn, I. S.; Ryzhik, I. M., Table of integrals, series and products (1980), Academic Press: Academic Press New York · Zbl 0521.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.