×

Least-squares estimation of multifractional random fields in a Hilbert-valued context. (English) Zbl 1342.60079

Summary: This paper derives conditions under which a stable solution to the least-squares linear estimation problem for multifractional random fields can be obtained. The observation model is defined in terms of a multifractional pseudodifferential equation. The weak-sense and strong-sense formulations of this problem are studied through the theory of fractional Sobolev spaces of variable order, and the spectral theory of multifractional pseudodifferential operators and their parametrix. The theory of reproducing kernel Hilbert spaces is also applied to define a stable solution to the direct and inverse estimation problems. Numerical projection methods are proposed based on the construction of orthogonal bases of these spaces. Indeed, projection into such bases leads to a regularization, removing the ill-posed nature of the estimation problem. A simulation study is developed to illustrate the derived estimation results. Some open research lines in relation to the extension of the derived results to the multifractal process context are also discussed.

MSC:

60G60 Random fields
60G22 Fractional processes, including fractional Brownian motion
62M09 Non-Markovian processes: estimation
46E22 Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces)
47G30 Pseudodifferential operators
35S05 Pseudodifferential operators as generalizations of partial differential operators
Full Text: DOI

References:

[1] Mandelbrot, B., Van Ness, J.W.: Fractional Brownian motion, fractional noises and applications. SIAM Rev. 10, 422-437 (1968) · Zbl 0179.47801 · doi:10.1137/1010093
[2] Benassi, A., Jaffard, S., Roux, D.: Elliptic Gaussian random processes. Rev. Mat. Iberoam. 13, 19-90 (1997) · Zbl 0880.60053 · doi:10.4171/RMI/217
[3] Ayache, A., Lévy-Véhel, J.: The generalized multifractional Brownian motion. Stat. Inference Stoch. Process. 3, 7-18 (2000) · Zbl 0979.60023 · doi:10.1023/A:1009901714819
[4] Jaffard, S.: The multifractal nature of Lévy processes. Probab. Theory Relat. Fields 114, 207-227 (1999) · Zbl 0947.60039 · doi:10.1007/s004400050224
[5] Ruiz-Medina, M.D., Anh, V.V., Angulo, J.M.: Fractional generalized random fields of variable order. Stoch. Anal. Appl. 22, 775-800 (2004) · Zbl 1069.60040 · doi:10.1081/SAP-120030456
[6] Anh, V.V., Leonenko, N.N.: Spectral analysis of fractional kinetic equations with random data. J. Stat. Phys. 104, 1349-1387 (2001) · Zbl 1034.82044 · doi:10.1023/A:1010474332598
[7] Kelbert, M., Leonenko, N.N., Ruiz-Medina, M.D.: Fractional random fields associated with stochastic fractional heat equations. Adv. Appl. Probab. 37, 108-133 (2005) · Zbl 1102.60049 · doi:10.1239/aap/1113402402
[8] Leonenko, N.N., Ruiz-Medina, M.D., Taqqu, M.: Fractional elliptic, hyperbolic and parabolic random fields. Electron. J. Probab. 16, 1134-1172 (2011) · Zbl 1231.60045 · doi:10.1214/EJP.v16-891
[9] Anh, V., Leonenko, N.N., Sakhno, L.M.: On a class of minimum contrast estimators for fractional stochastic processes and fields. J. Stat. Plan. Inference 123, 161-185 (2004) · Zbl 1103.62092 · doi:10.1016/S0378-3758(03)00136-8
[10] Anh, V., Leonenko, N.N., Sakhno, L.M.: Minimum contrast estimation of random processes based on information of second and third orders. J. Stat. Plan. Inference 137, 1302-1331 (2007) · Zbl 1107.62082 · doi:10.1016/j.jspi.2006.03.001
[11] Christakos, G.: Modern Spatiotemporal Geostatistics. Oxford University Press, New York (2000)
[12] Ivanov, A.V.: Asymptotic Theory of Nonlinear Regression. Kluwer, Dordrecht (1997) · Zbl 0874.62070 · doi:10.1007/978-94-015-8877-5
[13] Leonenko, N.N.: Limit Theorems for Random Fields with Singular Spectrum. Mathematics and Its Applications, vol. 465. Kluwer, Dordrecht (1999) · Zbl 0963.60048 · doi:10.1007/978-94-011-4607-4
[14] Ruiz-Medina, M.D., Angulo, J.M., Anh, V.V.: Fractional-order regularization and wavelet approximation to the inverse estimation problem for random fields. J. Multivar. Anal. 85, 192-216 (2003) · Zbl 1013.62097 · doi:10.1016/S0047-259X(02)00024-6
[15] Fernández-Pascual, R., Ruiz-Medina, M.D., Angulo, J.M.: Estimation of intrinsic processes affected by additive fractal noise. J. Multivar. Anal. 97, 1361-1381 (2006) · Zbl 1255.60080 · doi:10.1016/j.jmva.2005.10.006
[16] Bosq, D.: Linear Processes in Function Spaces. Springer, New York (2000) · Zbl 0962.60004 · doi:10.1007/978-1-4612-1154-9
[17] Bosq, D., Blanke, D.: Inference and Predictions in Large Dimensions. Wiley, Paris (2007) · Zbl 1183.62157 · doi:10.1002/9780470724033
[18] Ruiz-Medina, M.D.: Spatial autoregressive and moving average Hilbertian processes. J. Multivar. Anal. 102, 230-292 (2011) · Zbl 1327.62266 · doi:10.1016/j.jmva.2010.09.005
[19] Ruiz-Medina, M.D.: Spatial functional prediction from spatial autoregressive Hilbertian processes. Environmetrics 23, 119-128 (2012) · doi:10.1002/env.1143
[20] Ruiz-Medina, M.D., Espejo, R.M.: Spatial autoregressive functional plug-in prediction of ocean surface temperature. Stoch. Environ. Res. Risk Assess. 26, 335-344 (2012) · doi:10.1007/s00477-012-0559-z
[21] Ruiz-Medina, M.D., Espejo, R.M.: Integration of spatial functional interaction in the extrapolation of ocean surface temperature anomalies due to global warming. Int. J. Appl. Earth Obs. Geoinf. 22, 27-39 (2013) · doi:10.1016/j.jag.2012.01.021
[22] Ruiz-Medina, M.D., Salmerón, R.: Functional maximum-likelihood estimation of ARH(p) models. Stoch. Environ. Res. Risk Assess. 24, 131-146 (2010) · Zbl 1416.62525 · doi:10.1007/s00477-009-0306-2
[23] Ramm, A.G.: Random Fields Estimation. World Scientific, New York (2005) · Zbl 1090.65009 · doi:10.1142/5970
[24] Ruiz-Medina, M.D., Fernández-Pascual, R.: Spatiotemporal filtering from fractal spatial functional data sequences. Stoch. Environ. Res. Risk Assess. 24, 527-538 (2010) · Zbl 1418.62123 · doi:10.1007/s00477-009-0343-x
[25] Kikuchi, K., Negoro, A.: Pseudo differential operators with variable order of differentiation. Natural Sci. 31, 19-27 (1995). Reports of the Faculty of Liberal Arts, Shizuoka University
[26] Leopold, H.-G.: On Besov spaces of variable order of differentiation. Z. Anal. Anwend. 8, 69-82 (1989) · Zbl 0687.46019
[27] Leopold, H.-G.: On function spaces of variable order of differentiation. Forum Math. 3, 1-21 (1991) · Zbl 0737.46020 · doi:10.1515/form.1991.3.1
[28] Leopold, H.-G.: Embedding of function spaces of variable order of differentiation in function spaces of variable order of integration. Czechoslov. Math. J. 49, 633-644 (1999) · Zbl 1008.46015 · doi:10.1023/A:1022483721944
[29] Adler, R.J.: The Geometry of Random Fields. Wiley, Chichester (1981) · Zbl 0478.60059
[30] Vakhania, N.N., Tarieladze, V.I., Chebonyan, S.A.: Probability Distributions in Banach Spaces. Reidel, Dordrecht (1987) · Zbl 0698.60003 · doi:10.1007/978-94-009-3873-1
[31] Kato, T.: Perturbation Theory of Linear Operators. Springer, Berlin (1995) · Zbl 0836.47009
[32] Dunford, N., Schwartz, J.T.: Linear Operators. Part II: Spectral Theory. Interscience, New York (1963) · Zbl 0128.34803
[33] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978) · Zbl 0387.46032
[34] Anh, V.V., Angulo, J.M., Ruiz-Medina, M.D.: Possible long-range dependence in fractional random fields. J. Stat. Plan. Inference 80, 95-110 (1999) · Zbl 1039.62090 · doi:10.1016/S0378-3758(98)00244-4
[35] Anh, V., Leonenko, N.N., Shieh, N.-R.: Multifractality of products of geometric Ornstein-Uhlenbeck-type processes. Adv. Appl. Probab. 40, 1129-1156 (2008) · Zbl 1181.60061 · doi:10.1239/aap/1231340167
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.