×

Wavelets in Sobolev space over local fields of positive characteristics. (English) Zbl 1392.42033

Summary: The Sobolev space over local fields \(H^s(\mathbb K)\) is defined. A multiresolution analysis for the Sobolev space is developed. Orthonormal wavelets with respect to these spaces are constructed and an example is also presented.

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI

References:

[1] Albeverio, S.; Kozyrev, S., Multidimensional basis of p-adic wavelets and representation theory, P-Adic Numbers Ultrametric Anal. Appl., 1, 181-189, (2009) · Zbl 1187.42030
[2] Bastin, F.; Laubin, P., Regular compactly supported wavelets in Sobolev spaces, Duke Math. J., 87, 3, 481-508, (1997) · Zbl 0883.42026
[3] Behera, B.; Jahan, Q., Multiresolution analysis on local fields and characterization of scaling functions, Adv. Pure Appl. Math., 3, 181-202, (2012) · Zbl 1248.42028
[4] Benedetto, R. L., Wavelets, Frames and Operator Theory, 345, Examples of wavelets for local fields, 27-47, (2004), American Mathematical Society, Providence, RI · Zbl 1062.42027
[5] Benedetto, J. J.; Benedetto, R. L., A wavelet theory for local fields and related groups, J. Geom. Anal., 14, 423-456, (2004) · Zbl 1114.42015
[6] Berkolaiko, M. Z.; Novikov, I. Ya., On infinitely smooth compactly supported almost-wavelets, Dokl. Akad. Nauk, 326, 6, 935-938, (1992)
[7] Berkolaiko, M. Z.; Novikov, I. Ya., On infinitely smooth compactly supported almost-wavelets, Math. Notes, 56, 3, 877-883, (1994) · Zbl 0843.42017
[8] Chui, C. K., An Introduction to Wavelets, 1, (1992), Academic Press, Boston, MA · Zbl 0925.42016
[9] Dahlke, S., Wavelets, Images, and Surface Fitting, Multiresolution analysis and wavelets on locally compact abelian groups, 141-156, (1994), A K Peters · Zbl 0834.43004
[10] Daubechies, I., Ten Lectures on Wavelets, 61, (1992), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA · Zbl 0776.42018
[11] Hernndez, E.; Weiss, G., A First Course on Wavelets, (1996), CRC Press, Boca Raton, FL · Zbl 0885.42018
[12] Jiang, H.; Li, D.; Jin, N., Multiresolution analysis on local fields, J. Math. Anal. Appl., 294, 523-532, (2004) · Zbl 1045.43012
[13] Khrennikov, A. Y.; Shelkovich, V. M.; Skopina, M., P-adic refinable functions and MRA-based wavelets, J. Approx. Theory, 161, 226-238, (2009) · Zbl 1205.42031
[14] S. Kozyrev, Wavelet theory as p-adic spectral analysis, Izv. Ross. Akad. Nauk Ser. Mat.66 (2002) 149-158 (in Russian); Izv. Math.66 (2002) 367-376. · Zbl 1016.42025
[15] Mallat, S., Multiresolution approximations and wavelet orthonormal bases of \(L^2(\mathbb{R})\), Trans. Amer. Math. Soc., 315, 69-87, (1989) · Zbl 0686.42018
[16] Meyer, Y., Wavelets and Operators, (1992), Cambridge University Press, Cambridge · Zbl 0776.42019
[17] Novikov, I.; Protasov, V.; Skopina, M., Wavelet Theory, 239, (2011), American Mathematical Society, Providence, RI · Zbl 1213.42002
[18] Ramakrishnan, D.; Valenza, R. J., Fourier Analysis on Number Fields, 186, (1999), Springer-Verlag, New York · Zbl 0916.11058
[19] Taibleson, M. H., Fourier Analysis on Local Fields, 15, (1975), Princeton University Press, Princeton, NJ · Zbl 0319.42011
[20] Walnut, D. F., An Introduction to Wavelet Analysis, (2002), Birkhauser · Zbl 0989.42014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.