×

Taxis equations for amoeboid cells. (English) Zbl 1148.92003

Summary: The classical macroscopic chemotaxis equations have previously been derived from an individual-based description of the tactic response of cells that use a “run-and-tumble” strategy in response to environmental cues [R. Erban and H. G. Othmer, SIAM J. Appl. Math. 65, No. 2, 361–391 (2004; Zbl 1073.35116), Multiscale Model. Simul. 3, No. 2, 362–394 (2005; Zbl 1073.35205)]. Here we derive macroscopic equations for the more complex type of behavioral response characteristic of crawling cells, which detect a signal, extract directional information from a scalar concentration field, and change their motile behavior accordingly. We present several models of increasing complexity for which the derivation of population-level equations is possible, and we show how experimentally measured statistics can be obtained from the transport equation formalism. We also show that amoeboid cells that do not adapt to constant signals can still aggregate in steady gradients, but not in response to periodic waves. This is in contrast to the case of cells that use a “run-and-tumble” strategy, where adaptation is essential.

MSC:

92C17 Cell movement (chemotaxis, etc.)
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
60H15 Stochastic partial differential equations (aspects of stochastic analysis)

References:

[1] Alt, W., Biased random walk models for chemotaxis and related diffusion approximations, J. Math. Biol., 9, 147-177 (1980) · Zbl 0434.92001 · doi:10.1007/BF00275919
[2] Barkai, N.; Leibler, S., Robustness in simple biochemical networks, Nature, 387, 913-917 (1997) · doi:10.1038/43199
[3] Berg, H. C., How bacteria swim, Sci. Am., 233, 36-44 (1975) · doi:10.1038/scientificamerican0875-36
[4] Berg, H. C.; Brown, D. A., Chemotaxis in Escherichia Coli analysed by three-dimensional tracking, Nature, 239, 5374, 500-504 (1972) · doi:10.1038/239500a0
[5] Bourret, R. B.; Stock, A. M., Molecular information processing: lessons from bacterial chemotaxis, J. Biol. Chem., 277, 12, 9625-9628 (2002)
[6] Chalub, F.; Markowich, P.; Perthame, B.; Schmeiser, C., Kinetic models for chemotaxis and their drift-diffusion limits, Monatshefte für Mathematik, 142, 1-2, 123-141 (2004) · Zbl 1052.92005 · doi:10.1007/s00605-004-0234-7
[7] Chung, C. Y.; Funamoto, S.; Firtel, R. A., Signaling pathways controlling cell polarity and chemotaxis, Trends Biochem. Sci., 26, 9, 557-566 (2001)
[8] Condeelis, J., Mechanisms of ameboid chemotaxis: an evaluation of the cortical expansion model, Dev. Genet., 11, 333-340 (1990)
[9] Dallon, J. C.; Othmer, H. G., A discrete cell model with adaptive signalling for aggregation of Dictyostelium discoideum, Philos. Trans. R. Soc. Lond. B Biol. Sci., 352, 1351, 391-417 (1997) · doi:10.1098/rstb.1997.0029
[10] Dallon, J. C.; Othmer, H. G., A continuum analysis of the chemotactic signal seen by Dictyostelium discoideum, J. Theor. Biol., 194, 4, 461-483 (1998) · doi:10.1006/jtbi.1998.0766
[11] Dickinson, R. B.; Tranquillo, R. T., Transport equations and indices for random and biased cell migration based on single cell properties, SIAM J. Appl. Math., 55, 5, 1419-54 (1995) · Zbl 0843.60073 · doi:10.1137/S003613999223733X
[12] Dolak, Y.; Schmeiser, Y., Kinetic models for chemotaxis: hydrodynamic limits and spatio-temporal mechanisms, J. Math. Biol., 51, 6, 595-615 (2005) · Zbl 1077.92003
[13] Erban, R.: From individual to collective behaviour in biological systems. Ph.D. thesis, University of Minnesota, 2005
[14] Erban, R.; Hwang, H., Global existence results for the complex hyperbolic models of bacterial chemotaxis, Discret. Contin. Dyn. Syst. Ser. B, 6, 1239-1260 (2006) · Zbl 1111.35094 · doi:10.3934/dcdsb.2006.6.1239
[15] Erban, R.; Kevrekidis, I. G.; Adalsteinsson, D.; Elston, T. C., Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation, J. Chem. Phys., 124, 8, 084106 (2006) · doi:10.1063/1.2149854
[16] Erban, R.; Kevrekidis, I. G.; Othmer, H. G., An equation-free computational approach for extracting population-level behavior from individual-based models of biological dispersal, Physica D, 215, 1-24 (2006) · Zbl 1094.35127
[17] Erban, R.; Othmer, H., From individual to collective behaviour in bacterial chemotaxis, SIAM J. Appl. Math., 65, 2, 361-391 (2004) · Zbl 1073.35116 · doi:10.1137/S0036139903433232
[18] Erban, R.; Othmer, H. G., From signal transduction to spatial pattern formation in E. coli: a paradigm for multi-scale modeling in biology, Multiscale Model. Simul., 3, 2, 362-394 (2005) · Zbl 1073.35205 · doi:10.1137/040603565
[19] Fisher, P. R.; Merkl, R.; Gerisch, G., Quantitative analysis of cell motility and chemotaxis in Dictyostelium discoideum by using an image processing system and a novel chemotaxis chamber providing stationary chemical gradients, J. Cell Biol., 108, 973-984 (1989) · doi:10.1083/jcb.108.3.973
[20] Ford, R.; Lauffenburger, D. A., A simple expression for quantifying bacterial chemotaxis using capillary assay data: application to the analysis of enhanced chemotactic responses from growth-limited cultures, Math. Biosci., 109, 2, 127-150 (1992) · Zbl 0749.92012
[21] Geiger, J.; Wessels, D.; Soll, D. R., Human polymorphonuclear leukocytes respond to waves of chemoattractant, like Dictyostelium, Cell Motil. Cytoskeleton, 56, 1, 27-44 (2003) · doi:10.1002/cm.10133
[22] Gerisch, G., Chemotaxis in Dictyostelium, Annu. Rev. Physiol., 44, 535-552 (1982) · doi:10.1146/annurev.ph.44.030182.002535
[23] Gerisch, G.; Fromm, H.; Huesgen, A.; Wick, U., Control of cell-contact sites by cyclic AMP pulses in differentiating Dictyostelium cells, Nature, 255, 547-549 (1975)
[24] Hillen, T.; Othmer, H. G., The diffusion limit of transport equations derived from velocity-jump processes, SIAM J. Appl. Math., 61, 3, 751-775 (2000) · Zbl 1002.35120 · doi:10.1137/S0036139999358167
[25] Höfer, T.; Maini, P., Streaming instability of slime mold amoebae: an analytical model, phys. rev. e (statistical physics, plasmas, fluids, and related interdisciplinary topics), 56, 2, 1-7 (1997)
[26] Iijima, M.; Huang, Y. E.; Devreotes, P., Temporal and spatial regulation of chemotaxis, Dev. Cell, 3, 4, 469-478 (2002)
[27] Jin, T.; Zhang, N.; Long, Y.; Parent, C. A.; Devreotes, P. N., Localization of the G protein βγ complex in living cells during chemotaxis, Science, 287, 5455, 1034-1036 (2000) · doi:10.1126/science.287.5455.1034
[28] Keller, E. F.; Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26, 399-415 (1970) · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[29] Kevrekidis, I.; Gear, C.; Hyman, J.; Kevrekidis, P.; Runborg, O.; Theodoropoulos, K., Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis, Commun. Math. Sci., 1, 4, 715-762 (2003) · Zbl 1086.65066
[30] Kollmann, M.; Lovdok, L.; Bartholome, K.; Timmer, J.; Sourjik, V., Design principles of a bacterial signalling network, Nature, 438, 7067, 504-507 (2005) · doi:10.1038/nature04228
[31] Koshland, D. E., Bacterial chemotaxis as a model behavioral system (1980), New York: Raven, New York
[32] Krishnan, J.; Iglesias, P., A modelling framework describing the enzyme regulation of membrane lipids underlying gradient perception in Dictyostelium cells II: input-output analysis, J. Theor. Biol., 235, 504-520 (2005) · Zbl 1445.92112 · doi:10.1016/j.jtbi.2005.02.004
[33] Lilly, B., Dallon, J.C., Othmer, H.G.: Pattern formation in a cellular slime mold. In: Doedel, E., Tuckerman, L.S. (eds.) Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems. IMA Proceedings, vol. 119 pp. 359-383. Springer, New York (2000) · Zbl 0998.92003
[34] Martiel, J. L.; Goldbeter, A., A model based on receptor desensitization for cyclic AMP signaling in Dictyostelium cells, Biophys. J., 52, 807-828 (1987) · doi:10.1016/S0006-3495(87)83275-7
[35] Mato, J. M.; Losada, A.; Nanjundiah, V.; Konijn, T. M., Signal input for a chemotactic response in the cellular slime mold Dictyostelium discoideum, Proc. Natl. Acad. Sci., 72, 4991-4993 (1975) · doi:10.1073/pnas.72.12.4991
[36] Meinhardt, H., Orientation of chemotactic cells and growth cones: models and mechanisms, J. Cell Sci., 112, Pt17, 2867-2874 (1999)
[37] Mitchison, T. J.; Cramer, L. P., Actin-based cell motility and cell locomotion, Cell, 84, 3, 371-379 (1996) · doi:10.1016/S0092-8674(00)81281-7
[38] Othmer, H. G.; Dunbar, S. R.; Alt, W., Models of dispersal in biological systems, J. Math. Biol., 26, 3, 263-298 (1988) · Zbl 0713.92018 · doi:10.1007/BF00277392
[39] Othmer, H. G.; Hillen, T., The diffusion limit of transport equations, Part II: chemotaxis equations. SIAM J Am, 62, 1222-1260 (2002) · Zbl 1103.35098
[40] Othmer, H. G.; Schaap, P., Oscillatory cAMP signaling in the development of Dictyostelium discoideum, Comments on Theor. Biol., 5, 175-282 (1998)
[41] Parent, C. A.; Devreotes, P. N., A cell’s sense of direction, Science, 284, 5415, 765-770 (1999)
[42] Pate, E.; Othmer, H. G., Differentiation, cell sorting and proportion regulation in the slug stage of Dictyostelium discoideum, J. Theor. Biol., 118, 301-319 (1986) · doi:10.1016/S0022-5193(86)80061-3
[43] Patlak, C. S., Random walk with persistence and external bias, Bull. Math. Biophys., 15, 311-338 (1953) · Zbl 1296.82044
[44] Sheetz, M. P.; Felsenfeld, D.; Galbraith, C. G., Cell migration as a five-step cycle, Biochem. Soc. Symposia, 65, 233-243 (1999)
[45] Soll, D.R.: The use of computers in understanding how animal cells crawl. In: Jeon, K.W., Jarvik, J. (eds.) International Review of Cytology vol. 163, pp. 43-104. Academic, New York (1995)
[46] Sperb, R. P., On a mathematical model describing the aggregation of amoebae, Bull. Math. Biol., 41, 555-572 (1979) · Zbl 0419.92002
[47] Spiro, P. A.; Parkinson, J. S.; Othmer, H. G., A model of excitation and adaptation in bacterial chemotaxis, Proc. Natl. Acad. Sci. USA, 94, 14, 7263-7268 (1997) · doi:10.1073/pnas.94.14.7263
[48] Swanson, J.; Taylor, D. L., Local and spatially coordinated movements in Dictyostelium discoideum amoebae during chemotaxis, Cell, 28, 225-232 (1982) · doi:10.1016/0092-8674(82)90340-3
[49] Tang, Y.; Othmer, H. G., Excitation, oscillations and wave propagation in a G-protein-based model of signal transduction in Dictyostelium discoideum, Philos. Trans. R. Soc. Lond. B Biol. Sci., 349, 1328, 179-95 (1995) · doi:10.1098/rstb.1995.0102
[50] Tang, Y.; Othmer, H. G., A G-protein-based model of adaptation in Dictyostelium discoideum, Math. Biosci., 120, 1, 25-76 (1994) · Zbl 0821.92013 · doi:10.1016/0025-5564(94)90037-X
[51] Tranquillo, R. T.; Lauffenburger, D. A., Stochastic model for leukocyte chemosensory movement, J. Math. Biol., 25, 3, 229-262 (1987) · Zbl 0628.92017 · doi:10.1007/BF00276435
[52] Traynor, D.; Milne, J. L.; Insall, R. H.; Kay, R. R., Ca(2+) signalling is not required for chemotaxis in Dictyostelium, EMBO J, 19, 17, 4846-4854 (2000) · doi:10.1093/emboj/19.17.4846
[53] Varnum-Finney, B.; Voss, E.; Soll, D., Frequency and orientation of pseudopod formation of Dictyostelium discoideum amoebae chemotaxing in a spatial gradient: further evidence for a temporal mechanism, Cell Motil. Cytoskeleton, 8, 1, 18-26 (1987) · doi:10.1002/cm.970080104
[54] Wessels, D.; Murray, J.; Soll, D. R., Behavior of Dictyostelium amoebae is regulated primarily by the temporal dynamic of the natural cAMP wave, Cell Motil. Cytoskeleton, 23, 2, 145-156 (1992) · doi:10.1002/cm.970230207
[55] Wessels, D. J.; Zhang, H.; Reynolds, J.; Daniels, K.; Heid, P.; Lu, S.; Kuspa, A.; Shaulsky, G.; Loomis, W. F.; Soll, D. R., The internal phosphodiesterase regA is essential for the suppression of lateral pseudopods during Dictyostelium chemotaxis, Mol. Biol. Cell, 11, 8, 2803-2820 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.