×

Riemann moduli spaces are quantum ergodic. (English) Zbl 1517.32029

In this paper, quantum ergodicity is shown for Riemann moduli spaces with Weil-Petersson metric under some technical structural and analytic assumptions. Similar results are also obtained for some other singular spaces with ergodic geodesic flow.

MSC:

32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
58J51 Relations between spectral theory and ergodic theory, e.g., quantum unique ergodicity
58C40 Spectral theory; eigenvalue problems on manifolds

References:

[1] Werner Ballmann. Lectures on spaces of nonpositive curvature, volume 25 of DMV Seminar. Birkhäuser Verlag, Basel, 1995. With an appendix by Misha Brin, MR1377265, Zbl 0834.53003. · Zbl 0834.53003
[2] K. Burns, H. Masur, and A. Wilkinson. The Weil-Petersson geodesic flow is ergodic. Ann. of Math. (2), 175(2):835-908, 2012, MR2993753, Zbl 1254.37005. · Zbl 1254.37005
[3] Y. Colin de Verdière. Ergodicité et fonctions propres du Laplacien. · Zbl 0576.58032
[4] Comm. Math. Phys., 102(3):497-502, 1985, MR0818831, Zbl 0576.58032.
[5] Jeff Cheeger. Spectral geometry of singular Riemannian spaces. J. Differ-ential Geom., 18(4):575-657 (1984), 1983, MR0730920, Zbl 0529.58034. · Zbl 0529.58034
[6] Patrick Gérard andÉric Leichtnam. Ergodic properties of eigenfunc-tions for the Dirichlet problem. Duke Math. J., 71(2):559-607, 1993, MR1233448, Zbl 0788.35103. · Zbl 0788.35103
[7] Juan B. Gil and Gerardo A. Mendoza. Adjoints of elliptic cone operators. · Zbl 1030.58012
[8] Amer. J. Math., 125(2):357-408, 2003, MR1963689, Zbl 1030.58012.
[9] Lars Hörmander. The analysis of linear partial differential operators. III. Classics in Mathematics. Springer-Verlag, Berlin, 2007. Pseudo-differential Operators, Reprint of the 1994 edition, MR2304165, Zbl 1115.35005. · Zbl 1115.35005
[10] Lars Hörmander. The analysis of linear partial differential operators. IV. Classics in Mathematics. Springer-Verlag, Berlin, 2009. Fourier integral operators, Reprint of the 1994 edition, MR2512677, Zbl 1178.35003. · Zbl 1178.35003
[11] Luc Hillairet and Jared Wunsch. On resonances generated by conic diffraction. To appear in Ann. Inst. Fourier. Preprint, arXiv:1706.07869, 2017. · Zbl 1477.58020
[12] Lizhen Ji, Rafe Mazzeo, Werner Müller, and Andras Vasy. Spectral the-ory for the Weil-Petersson Laplacian on the Riemann moduli space. Com-ment. Math. Helv., 89(4):867-894, 2014, MR3284297, Zbl 1323.35119. · Zbl 1323.35119
[13] Matthias Lesch. Operators of Fuchs type, conical singularities, and as-ymptotic methods, volume 136 of Teubner-Texte sur Math. B.G. Teubner, Stuttgart, Leipzig, 1997, MR1449639, Zbl 1156.58302. · Zbl 1156.58302
[14] Eduard Looijenga. Smooth Deligne-Mumford compactifications by means of Prym level structures. J. Algebraic Geom., 3(2):283-293, 1994, MR1257324, Zbl 0814.14030. · Zbl 0814.14030
[15] Kefeng Liu, Xiaofeng Sun, and Shing-Tung Yau. Good geometry on the curve moduli. Publ. Res. Inst. Math. Sci., 44(2):699-724, 2008, MR2426362, Zbl 1219.14012. · Zbl 1219.14012
[16] Howard Masur. Extension of the Weil-Petersson metric to the boundary of Teichmuller space. Duke Math. J., 43(3):623-635, 1976, MR0417456, Zbl 0358.32017. · Zbl 0358.32017
[17] Curtis T. McMullen. The Gauss-Bonnet theorem for cone manifolds and volumes of moduli spaces. Amer. J. Math., 139(1):261-291, 2017, MR3619915, Zbl 1364.53038. · Zbl 1364.53038
[18] Robert C. McOwen. Point singularities and conformal metrics on Riemann surfaces. Proc. Amer. Math. Soc., 103(1):222-224, 1988, MR0938672, Zbl 0657.30033. · Zbl 0657.30033
[19] Edith A. Mooers. Heat kernel asymptotics on manifolds with conic sin-gularities. J. Anal. Math., 78:1-36, 1999, MR1714065, Zbl 0981.58022. · Zbl 0981.58022
[20] Rafe Mazzeo and Jan Swoboda. Asymptotics of the Weil-Petersson met-ric. Int. Math. Res. Not. IMRN, (6):1749-1786, 2017, MR3658182, Zbl 1405.32014. · Zbl 1405.32014
[21] Richard Melrose and Xuwen Zhu. Boundary Behaviour of Weil-Petersson and Fibre Metrics for Riemann Moduli Spaces. Int. Math. Res. Not. IMRN, (16):5012-5065, 2019, MR4001023, Zbl 07323094. · Zbl 1457.32038
[22] M. Pikaart and A. J. de Jong. Moduli of curves with non-abelian level structure. In The moduli space of curves (Texel Island, 1994), volume 129 of Progr. Math., pages 483-509. Birkhäuser Boston, Boston, MA, 1995, MR1363068, Zbl 0860.14024. · Zbl 0860.14024
[23] A. I.Šnirel man. Ergodic properties of eigenfunctions. Uspehi Mat. Nauk, 29(6(180)):181-182, 1974, MR0402834, Zbl 0324.58020. · Zbl 0324.58020
[24] Christopher D. Sogge. Hangzhou lectures on eigenfunctions of the Lapla-cian, volume 188 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2014, MR3186367, Zbl 1312.58001. · Zbl 1312.58001
[25] Ravi Vakil. The moduli space of curves and its tautological ring. Notices Amer. Math. Soc., 50(6):647-658, 2003, MR1988577, Zbl 1082.14033. · Zbl 1082.14033
[26] Scott Wolpert. On the Weil-Petersson geometry of the moduli space of curves. Amer. J. Math., 107(4):969-997, 1985, MR0796909, Zbl 0578.32039. · Zbl 0578.32039
[27] Scott A. Wolpert. Geometry of the Weil-Petersson completion of Te-ichmüller space. In Surveys in differential geometry, Vol. VIII (Boston, MA, 2002), volume 8 of Surv. Differ. Geom., pages 357-393. Int. Press, Somerville, MA, 2003, MR2039996, Zbl 1049.32020. · Zbl 1049.32020
[28] Scott A. Wolpert. Behavior of geodesic-length functions on Teichmüller space. J. Differential Geom., 79(2):277-334, 2008, MR2420020, Zbl 1147.30032. · Zbl 1147.30032
[29] Scott A. Wolpert. Families of Riemann surfaces and Weil-Petersson ge-ometry, volume 113 of CBMS Regional Conference Series in Mathemat-ics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2010, MR2641916, Zbl 1198.30049. · Zbl 1198.30049
[30] Sumio Yamada. On the geometry of Weil-Petersson completion of Te-ichmüller spaces. Math. Res. Lett., 11(2-3):327-344, 2004, MR2067477, Zbl 1060.32005. · Zbl 1060.32005
[31] Steven Zelditch. Uniform distribution of eigenfunctions on compact hy-perbolic surfaces. Duke Math. J., 55(4):919-941, 1987, MR0916129, Zbl 0643.58029. · Zbl 0643.58029
[32] Steven Zelditch and Maciej Zworski. Ergodicity of eigenfunctions for er-godic billiards. Comm. Math. Phys., 175(3):673-682, 1996, MR1372814, Zbl 0840.58048. · Zbl 0840.58048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.