×

Spread of premalignant mutant clones and cancer initiation in multilayered tissue. (English) Zbl 1525.92031

Summary: Over 80% of human cancers originate from the epithelium, which covers the outer and inner surfaces of organs and blood vessels. In stratified epithelium, the bottom layers are occupied by stem and stem-like cells that continually divide and replenish the upper layers. In this work, we study the spread of premalignant mutant clones and cancer initiation in stratified epithelium, using the biased voter model on stacked two-dimensional lattices. Our main result is an estimate of the propagation speed of a premalignant mutant clone, which is asymptotically precise in the cancer-relevant weak-selection limit. We use our main result to study cancer initiation under a two-step mutational model of cancer, which includes computing the distributions of the time of cancer initiation and the size of the premalignant clone giving rise to cancer. Our work quantifies the effect of epithelial tissue thickness on the process of carcinogenesis, thereby contributing to an emerging understanding of the spatial evolutionary dynamics of cancer.

MSC:

92C50 Medical applications (general)
60K35 Interacting random processes; statistical mechanics type models; percolation theory
92D25 Population dynamics (general)

References:

[1] ARMITAGE, P. and DOLL, R. (1954). The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 8 1-12.
[2] ARMITAGE, P. and DOLL, R. (1957). A two-stage theory of carcinogenesis in relation to the age distribution of human cancer. Br. J. Cancer 11 161-169.
[3] BOZIC, I., ANTAL, T., OHTSUKI, H., CARTER, H., KIM, D., CHEN, S., KARCHIN, R., KINZLER, K. W., VOGELSTEIN, B. et al. (2010). Accumulation of driver and passenger mutations during tumor progression. Proc. Natl. Acad. Sci. USA 107 18545-18550.
[4] BRAAKHUIS, B., TABOR, M., KUMMER, J., LEEMANS, C. and BRAKENHOFF, R. (2003). A genetic explanation of Slaughter’s concept of field cancerization evidence and clinical implications. Cancer Res. 63 1727-1730.
[5] BRAMSON, M. and GRIFFEATH, D. (1980). On the Williams-Bjerknes tumour growth model. II. Math. Proc. Cambridge Philos. Soc. 88 339-357. · Zbl 0459.92013 · doi:10.1017/S0305004100057650
[6] BRAMSON, M. and GRIFFEATH, D. (1981). On the Williams-Bjerknes tumour growth model. I. Ann. Probab. 9 173-185. · Zbl 0459.92012
[7] CANNONE, C. (2017). A short note on Poisson tail bounds. Available at http://www.cs.columbia.edu/ ccanonne/files/misc/2017-poissonconcentration.pdf.
[8] CHAI, H. and BROWN, R. (2009). Field effect in cancer-an update. Annals of Clinical & Laboratory Science 39 331-337.
[9] CHANDRASOMA, P. T. (2018). Chapter 4—histologic definition and diagnosis of epithelia in the esophagus and proximal stomach. In GERD (P. T. Chandrasoma, ed.) 73-107. Academic Press, San Diego.
[10] CURTIUS, K., WRIGHT, N. and GRAHAM, T. (2018). An evolutionary perspective on field cancerization. Nat. Rev. Cancer 18 19-32.
[11] Durrett, R. (1984). Oriented percolation in two dimensions. Ann. Probab. 12 999-1040. · Zbl 0567.60095
[12] Durrett, R. (1988). Lecture Notes on Particle Systems and Percolation. The Wadsworth & Brooks/Cole Statistics/Probability Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA. · Zbl 0659.60129
[13] DURRETT, R. (1995). Ten lectures on particle systems. In Lectures on Probability Theory (Saint-Flour, 1993). Lecture Notes in Math. 1608 97-201. Springer, Berlin. · Zbl 0840.60088 · doi:10.1007/BFb0095747
[14] DURRETT, R., FOO, J. and LEDER, K. (2016). Spatial Moran models, II: Cancer initiation in spatially structured tissue. J. Math. Biol. 72 1369-1400. · Zbl 1344.60093 · doi:10.1007/s00285-015-0912-1
[15] DURRETT, R. and MOSELEY, S. (2015). Spatial Moran models I. Stochastic tunneling in the neutral case. Ann. Appl. Probab. 25 104-115. · Zbl 1344.60094 · doi:10.1214/13-AAP989
[16] DURRETT, R. and ZÄHLE, I. (2007). On the width of hybrid zones. Stochastic Process. Appl. 117 1751-1763. · Zbl 1141.60061 · doi:10.1016/j.spa.2006.05.017
[17] DVORETZKY, A. and ERDÖS, P. (1951). Some problems on random walk in space. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950 353-367. Univ. California Press, Berkeley-Los Angeles, CA. · Zbl 0044.14001
[18] FOO, J., LEDER, K. and RYSER, M. D. (2014). Multifocality and recurrence risk: A quantitative model of field cancerization. J. Theoret. Biol. 355 170-184. · Zbl 1325.92044 · doi:10.1016/j.jtbi.2014.02.042
[19] FOO, J., LEDER, K. and SCHWEINSBERG, J. (2020). Mutation timing in a spatial model of evolution. Stochastic Process. Appl. 130 6388-6413. · Zbl 1448.92062 · doi:10.1016/j.spa.2020.05.015
[20] FOO, J., LEDER, K. and ZHU, J. (2014). Escape times for branching processes with random mutational fitness effects. Stochastic Process. Appl. 124 3661-3697. · Zbl 1296.60233 · doi:10.1016/j.spa.2014.06.003
[21] GEBOES, K. (1994). Squamous mucosa and reflux. http://www.hon.ch/OESO/books/Vol_3_Eso_Mucosa/Articles/ART004.HTML.
[22] INSTITUTE, N. N. C. SEER Training Cancer classification. https://training.seer.cancer.gov/disease/categories/classification.html.
[23] KNUDSON, A. (2001). Two genetic hits (more or less) to cancer. Nat. Rev. Cancer 1 157-161.
[24] KNUDSON, A. G. (1971). Mutation and cancer: Statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 68 820-823.
[25] KOMAROVA, N. L. (2006). Spatial stochastic models for cancer initiation and progression. Bull. Math. Biol. 68 1573-1599. · Zbl 1334.92202 · doi:10.1007/s11538-005-9046-8
[26] Lawler, G. F. and Limic, V. (2010). Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics 123. Cambridge Univ. Press, Cambridge. · Zbl 1210.60002 · doi:10.1017/CBO9780511750854
[27] Levin, D. A., Peres, Y. and Wilmer, E. L. (2009). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI. · Zbl 1160.60001 · doi:10.1090/mbk/058
[28] Liggett, T. M. (2005). Interacting Particle Systems. Classics in Mathematics. Springer, Berlin. · doi:10.1007/b138374
[29] NOWAK, M. A. (2006). Evolutionary Dynamics: Exploring the Equations of Life. The Belknap Press of Harvard Univ. Press, Cambridge, MA. · Zbl 1115.92047
[30] Richardson, D. (1973). Random growth in a tessellation. Proc. Camb. Philos. Soc. 74 515-528. · Zbl 0295.62094 · doi:10.1017/s0305004100077288
[31] WILLIAMS, T. and BJERKNES, R. (1972). Stochastic model for abnormal clone spread through epithelial basal layer. Nature 236 19-21. · doi:10.1038/236019a0
[32] WODARZ, D. and KOMAROVA, N. L. (2014). Dynamics of Cancer: Mathematical Foundations of Oncology. World Scientific Co. Pte. Ltd., Hackensack, NJ · Zbl 1318.92001 · doi:10.1142/8973
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.