×

Prescribed chattering reduction control for quadrotors using aperiodic signal updating. (English) Zbl 1510.93222

Summary: In the paper, a prescribed chattering reduction control using aperiodic signal updating is presented for quadrotors subject to parameter uncertainties and external disturbances. Using estimation errors instead of tracking errors to update adaptive laws, estimator-based minimum learning parameter (EMLP) observers capable of relaxing computational complexity are respectively explored in translational and rotational loops to reject fast time-varying disturbances, such that transient oscillations can be efficiently mitigated even with a large adaptive gain. Meanwhile, quantitative analysis for transient learning performance is characterized by means of \(L_2\) norms of time differential of neural network weights. With the aid of disturbance estimates, a relative event-triggered robust control law is derived by inserting a compensation term to guarantee a favorable trajectory tracking with Zeno free behaviors and decreased sampling cost. Besides, an appointed-time prescribed performance control (APPC) is established, enforcing trajectory tracking errors to evolve within pre-given regions even in face of triggering errors, where a piecewise and continuous finite-time behavior function, rather than an exponential decaying function, is applied to enable a preassigned fast convergence time without retuning controller parameters. Finally, the stability of closed-loop system is proved via Lyapunov synthesis, while comparative studies are provided to validate the effectiveness of presented control method.

MSC:

93C85 Automated systems (robots, etc.) in control theory
70Q05 Control of mechanical systems
Full Text: DOI

References:

[1] Lv, Z. Y.; Wu, Y. H.; Rui, W., Nonlinear motion control for a quadrotor transporting a cable-suspended payload, IEEE Transl. Veh. Technol., 69, 8, 8192-8206 (2020)
[2] Du, H. B.; Yu, B.; Wei, J. J.; Zhang, J.; Wu, D.; Tao, W. Q., Attitude trajectory planning and attitude control for quad-rotor aircraft based on finite-time control technique, Appl. Math. Comput., 368, Article 125493 pp. (2020) · Zbl 1497.70011
[3] Shao, X. L.; Yue, X. H.; li, J., Event-triggered robust control for quadrotors with preassigned time performance constraints, Appl. Math. Comput. (2020)
[4] Wang, J. H.; Xu, Y. L.; Xu, Y.; Yang, D. D., Time-varying formation for high-order multi-agent systems with external disturbances by event-triggered integral sliding mode control, Appl. Math. Comput., 359, 333-343 (2019) · Zbl 1428.93014
[5] Mei, K. Q.; Ma, L.; He, R. X.; Ding, S. H., Finite-time controller design of multiple integrator nonlinear systems with input saturation, Appl. Math. Comput., 372, Article 124986 pp. (2020) · Zbl 1433.93047
[6] Gohari, P. S.; Mohammadi, H.; Taghvaei, S., Using chaotic maps for 3D boundary surveillance by quadrotor robot, Appl. Soft Comput., 76, 66-77 (2019)
[7] Tomic, T.; Schmid, K.; Lutz, P.; Domel, A.; Kassecker, M.; Mair, E.; Grixa, I. L.; Ruess, F.; Suppa, M.; Burschka, D., Toward a fully autonomous UAV research platform for indoor and outdoor urban search and rescue, IEEE Robot. Autom. Mag., 19, 3, 46-56 (2012)
[8] Qian, L. H.; Liu, H. H.T., Path-following control of a quadrotor UAV with a cable-suspended payload under wind disturbances, IEEE Trans. Ind. Electron., 67, 3, 2021-2029 (2020)
[9] Fari, S.; Wang, X. M.; Roy, S.; Baldi, S., Addressing unmodeled path-following dynamics via adaptive vector field: a UAV test case, IEEE Trans. Aerosp. Electron. Syst., 56, 2, 1613-1622 (2020)
[10] Eskandarpour, A.; Sharf, I., A constrained error-based MPC for path following of quadrotor with stability analysis, Nonlinear Dyn., 99, 2, 899-918 (2020) · Zbl 1459.93069
[11] Shao, X. L.; Liu, J.; Wang, H. L., Robust back-stepping output feedback trajectory tracking for quadrotors via extended state observer and sigmoid tracking differentiator, Mech. Syst. Signal Process., 104, 631-647 (2018)
[12] Zhao, L.; Dai, L. W.; Xia, Y. Q.; Li, P., Attitude control for quadrotors subjected to wind disturbances via active disturbance rejection control and integral sliding mode control, Mech. Syst. Signal Process., 129, 531-545 (2019)
[13] Zhao, K.; Zhang, J. H.; Ma, D. L.; Xia, Y. Q., Composite disturbance rejection attitude control for quadrotor with unknown disturbance, IEEE Trans. Ind. Electron., 67, 8, 6894-6903 (2020)
[14] Rios, H.; Gonzalez-Sierra, J.; Dzul, A., Robust tracking output-control for a quad-rotor: a continuous sliding-mode approach, J. Frankl. Inst. Eng. Appl. Math., 354, 15, 6672-6691 (2017) · Zbl 1373.93080
[15] Rios, H.; Falcon, R.; Gonzalez, O. A.; Dzul, A., Continuous sliding-modes control strategies for quadrotor robust tracking: real-time application, IEEE Trans. Ind. Electron., 66, 2, 1264-1272 (2019)
[16] Abaunza, H.; Castillo, P., Quadrotor aggressive deployment, using a quaternion-based spherical chattering-free sliding-mode controller, IEEE Trans. Aerosp. Electron. Syst., 56, 3, 1979-1991 (2020)
[17] Shao, X. L.; Liu, J.; Cao, H. L., Robust dynamic surface trajectory tracking control for a quadrotor UAV via extended state observer, Int. J. Robust Nonlinear Control, 28, 7, 2700-2719 (2018) · Zbl 1391.93156
[18] Abadi, A.; El Amraoui, A.; Mekki, H.; Ramdani, N., Robust tracking control of quadrotor based on flatness and active disturbance rejection control, IET Control Theory Appl., 14, 8, 1057-1068 (2020) · Zbl 07907178
[19] Shao, X. L.; Cao, Z. L.; Si, H. N., Neurodynamic formation maneuvering control with modified prescribed performances for networked uncertain quadrotors, IEEE Syst. J. (2020)
[20] Mu, C. X.; Zhang, Y., Learning-based robust tracking control of quadrotor with time-varying and coupling uncertainties, IEEE Trans. Neural Netw.Learn. Syst., 31, 1, 259-273 (2020)
[21] Xu, Q. Z.; Wang, Z. S.; Zhen, Z. Y., Adaptive neural network finite time control for quadrotor UAV with unknown input saturation, Nonlinear Dyn., 98, 3, 1973-1998 (2019) · Zbl 1430.70036
[22] Wu, J.; Chen, X. M.; Zhao, Q. J.; Li, J.; Wu, Z. G., Adaptive neural dynamic surface control with prespecified tracking accuracy of uncertain stochastic nonstrict-feedback systems, IEEE Trans. Cybern. (2020)
[23] Cervantes-Rojas, J. S.; Munoz, F.; Chairez, I.; Gonzalez-Hernandez, I.; Salazar, S., Adaptive tracking control of an unmanned aerial system based on a dynamic neural-fuzzy disturbance estimator, ISA Trans., 101, 309-326 (2020)
[24] Chen, Z.; Huang, F. H.; Sun, W. C.; Gu, J.; Yao, B., RBF-neural-network-based adaptive robust control for nonlinear bilateral teleoperation manipulators with uncertainty and time delay, IEEE-ASME Trans. Mechatron., 25, 2, 906-918 (2020)
[25] Bu, X. W.; Wu, X. Y.; Wei, D. Z.; Huang, J. Q., Neural-approximation-based robust adaptive control of flexible air-breathing hypersonic vehicles with parametric uncertainties and control input constraints, Inf. Sci., 346, 29-43 (2016) · Zbl 1398.93261
[26] Xu, B.; Zhang, P. C., Minimal-learning-parameter technique based adaptive neural sliding mode control of MEMS gyroscope, Complexity, 6019175 (2017) · Zbl 1373.93082
[27] Bechlioulis, C. P.; Rovithakis, G. A., Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance, IEEE Trans. Autom. Control, 53, 9, 2090-2099 (2008) · Zbl 1367.93298
[28] Mehdifar, F.; Bechlioulis, C. P.; Hashemzadeh, F.; Baradarannia, M., Prescribed performance distance-based formation control of multi-agent systems, Automatica (2020) · Zbl 1451.93007
[29] Bu, X. W.; Xiao, Y.; Wang, K., A prescribed performance control approach guaranteeing small overshoot for air-breathing hypersonic vehicles via neural approximation, Aerosp. Sci. Technol., 71, 485-498 (2017)
[30] Koksal, N.; An, H.; Fidan, B., Backstepping-based adaptive control of a quadrotor UAV with guaranteed tracking performance, ISA Trans. (2020)
[31] Dai, S. L.; He, S. D.; Chen, X.; Jin, X., Adaptive leader-follower formation control of nonholonomic mobile robots with prescribed transient and steady-state performance, IEEE Trans. Ind. Inf., 16, 6, 3662-3671 (2020)
[32] Yin, Z. Y.; Suleman, A.; Luo, J. J.; Wei, C. S., Appointed-time prescribed performance attitude tracking control via double performance functions, Aerosp. Sci. Technol., 93, Article 105337 pp. (2019)
[33] Wei, C. S.; Luo, J. J.; Yin, Z. Y.; Yuan, J. P., Leader-following consensus of second-order multi-agent systems with arbitrarily appointed-time prescribed performance, IET Control Theory Appl., 12, 16, 2276-2286 (2018)
[34] Shao, X. L.; Shi, Y., Neural adaptive control for MEMS gyroscope with full-state constraints and quantized input, IEEE Trans. Ind. Inf., 16, 10, 6444-6454 (2020)
[35] Shao, X. L.; Shi, Y.; Zhang, W. D.; Cao, H. L., Neurodynamic approximation-based quantized control with improved transient performances for MEMS gyroscopes: theory and experimental results, IEEE Trans. Ind. Electron. (2020)
[36] Guo, B.; Chen, Y., Event-triggered robust adaptive sliding mode fault-tolerant control for nonlinear systems, IEEE Trans. Ind. Inf., 16, 11, 6982-6992 (2020)
[37] Yao, D. Y.; Li, H. Y.; Lu, R. Q.; Shi, Y., Distributed sliding-mode tracking control of second-order nonlinear multiagent systems: an event-triggered approach, IEEE Trans. Cybern., 50, 9, 3892-3902 (2021)
[38] Lv, M. G.; Wang, D.; Peng, Z. H.; Liu, L.; Wang, H. L., Event-triggered neural network control of autonomous surface vehicles over wireless network, Sci. China Inf. Sci., 63, 5, Article 150205 pp. (2020)
[39] Shao, X. L.; Shi, Y.; Zhang, W. D., Input-and-measurement event-triggered control for flexible-air breathing hypersonic vehicles with asymmetric partial-state constraints, Nonlinear Dyn. (2020) · Zbl 1517.93060
[40] Yu, Q. X.; Hou, Z. S.; Bu, X. H.; Yu, Q. F., RBFNN-based data-driven predictive iterative learning control for nonaffine nonlinear systems, IEEE Trans. Neural Netw. Learn. Syst., 31, 4, 1170-1182 (2020)
[41] Su, L. D., A radial basis function (RBF)-finite difference (FD) method for the backward heat conduction problem, Appl. Math. Comput., 354, 232-247 (2019) · Zbl 1428.74222
[42] Koksal, N.; An, H.; Fidan, B., Backstepping-based adaptive control of a quadrotor UAV with guaranteed tracking performance, ISA Trans. (2020)
[43] Mehdifar, F.; Bechlioulis, C. P.; Hashemzadeh, F.; Baradarannia, M., Prescribed performance distance-based formation control of multi-agent Systems, Automatica, 119, Article 109086 pp. (2020) · Zbl 1451.93007
[44] Eliker, K.; Grouni, S.; Tadjine, M.; Zhang, W. D., Practical finite time adaptive robust flight control system for quad-copter UAVs, Aerosp. Sci. Technol. (2020)
[45] Falcon, R.; Rios, H.; Mera, M.; Dzul, A., Attractive ellipsoid-based robust control for quadrotor tracking, IEEE Trans. Ind. Electron., 67, 9, 7851-7860 (2020)
[46] Shao, X. L.; Wang, L. W.; Li, J.; Liu, J., High-order ESO based output feedback dynamic surface control for quadrotors under position constraints and uncertainties, Aerosp. Sci. Technol., 89, 288-298 (2019)
[47] Xia, X. N.; Zhang, T. P., Robust adaptive quantized DSC of uncertain pure-feedback nonlinear systems with time-varying output and state constraints, Int. J. Robust Nonlinear Control, 28, 10, 3357-3375 (2018) · Zbl 1396.93046
[48] Xi, C.; Dong, J., Adaptive fuzzy guaranteed performance control for uncertain nonlinear systems with event-triggered input, Appl. Math. Comput., 363, Article 124604 pp. (2019) · Zbl 1433.93070
[49] Huang, Y.; Wang, J.; Shi, D.; Shi, L., Toward event-triggered extended state observer, IEEE Trans. Autom. Control, 63, 6, 1842-1849 (2018) · Zbl 1395.93266
[50] Bu, X. W.; Wu, X. Y.; Huang, J. Q.; Ma, Z.; Zhang, R., Minimal-learning-parameter based simplified adaptive neural back-stepping control of flexible air-breathing hypersonic vehicles without virtual controllers, Neurocomputing, 175, 816-825 (2016)
[51] Peng, Z. H.; Wang, D.; Wang, W.; Liu, L., Containment control of networked autonomous underwater vehicles: A predictor-based neural DSC design, ISA Trans., 59, 160-171 (2015)
[52] Shen, Z. P.; Li, F.; Cao, X. M.; Guo, C., Prescribed performance dynamic surface control for trajectory tracking of quadrotor UAV with uncertainties and input constraints, Int. J. Control (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.