×

Synergies between machine learning and reasoning – an introduction by the Kay R. Amel group. (English) Zbl 1543.68363

Summary: This paper proposes a tentative and original survey of meeting points between Knowledge Representation and Reasoning (KRR) and Machine Learning (ML), two areas which have been developed quite separately in the last four decades. First, some common concerns are identified and discussed such as the types of representation used, the roles of knowledge and data, the lack or the excess of information, or the need for explanations and causal understanding. Then, the survey is organised in seven sections covering most of the territory where KRR and ML meet. We start with a section dealing with prototypical approaches from the literature on learning and reasoning: Inductive Logic Programming, Statistical Relational Learning, and Neurosymbolic AI, where ideas from rule-based reasoning are combined with ML. Then we focus on the use of various forms of background knowledge in learning, ranging from additional regularisation terms in loss functions, to the problem of aligning symbolic and vector space representations, or the use of knowledge graphs for learning. Then, the next section describes how KRR notions may benefit to learning tasks. For instance, constraints can be used as in declarative data mining for influencing the learned patterns; or semantic features are exploited in low-shot learning to compensate for the lack of data; or yet we can take advantage of analogies for learning purposes. Conversely, another section investigates how ML methods may serve KRR goals. For instance, one may learn special kinds of rules such as default rules, fuzzy rules or threshold rules, or special types of information such as constraints, or preferences. The section also covers formal concept analysis and rough sets-based methods. Yet another section reviews various interactions between Automated Reasoning and ML, such as the use of ML methods in SAT solving to make reasoning faster. Then a section deals with works related to model accountability, including explainability and interpretability, fairness and robustness. Finally, a section covers works on handling imperfect or incomplete data, including the problem of learning from uncertain or coarse data, the use of belief functions for regression, a revision-based view of the EM algorithm, the use of possibility theory in statistics, or the learning of imprecise models. This paper thus aims at a better mutual understanding of research in KRR and ML, and how they can cooperate. The paper is completed by an abundant bibliography.

MSC:

68T37 Reasoning under uncertainty in the context of artificial intelligence
68T05 Learning and adaptive systems in artificial intelligence
68T30 Knowledge representation
Full Text: DOI

References:

[1] Aamodt, A.; Plaza, E., Case-based reasoning: foundational issues, methodological variations, and system approaches, AI Commun., 7, 1, 39-59, 1994
[2] Abellán, J.; Moral, S., Building classification trees using the total uncertainty criterion, Int. J. Intell. Syst., 18, 12, 1215-1225, 2003 · Zbl 1101.68799
[3] Abramé, A.; Habet, D., AHMAXSAT: description and evaluation of a branch and bound Max-SAT solver, J. Satisf. Boolean Model. Comput., 2015
[4] Adadi, A.; Berrada, M., Peeking inside the black-box: a survey on explainable artificial intelligence (XAI), IEEE Access, 6, 52138-52160, 2018
[5] Adebayo, J.; Gilmer, J.; Goodfellow, I. J.; Kim, B., Local explanation methods for deep neural networks lack sensitivity to parameter values, (Workshop Track Proc. 6th Int. Conf. on Learning Representations, ICLR’18. Workshop Track Proc. 6th Int. Conf. on Learning Representations, ICLR’18, Vancouver, April 30 - May 3, April 2018, OpenReview.net)
[6] Adebayo, J.; Gilmer, J.; Muelly, M.; Goodfellow, I.; Hardt, M.; Kim, B., Sanity checks for saliency maps, (Proc. 32nd Int. Conf. on Neural Information Processing Systems, NIPS’18, 2018, Curran Associates Inc.: Curran Associates Inc. Red Hook, NY, USA), 9525-9536
[7] Aglin, G.; Nijssen, S.; Schaus, P., Learning optimal decision trees under memory constraints, (Amini, M.; Canu, S.; Fischer, A.; Guns, T.; Novak, P. K.; Tsoumakas, G., Machine Learning and Knowledge Discovery in Databases - Proc. European Conf., ECML PKDD’22, Part V. Machine Learning and Knowledge Discovery in Databases - Proc. European Conf., ECML PKDD’22, Part V, Grenoble, Sept. 19-23. Machine Learning and Knowledge Discovery in Databases - Proc. European Conf., ECML PKDD’22, Part V. Machine Learning and Knowledge Discovery in Databases - Proc. European Conf., ECML PKDD’22, Part V, Grenoble, Sept. 19-23, LNCS, vol. 13717, 2022, Springer), 393-409
[8] Agrawal, R.; Imielinski, T.; Swami, A., Mining association rules between sets of items in large databases, (Proc. SIGMOD Conf.. Proc. SIGMOD Conf., Washington, DC, May 26-28, 1993, ACM Press), 207-216
[9] Alarcón, Y. C.C.; Destercke, S., Distributionally robust, skeptical binary inferences in multi-label problems, (Int. Symp. on Imprecise Probability: Theories and Applications, 2021, PMLR), 51-60
[10] Alonso, J. M.; Castiello, C.; Mencar, C., A bibliometric analysis of the explainable artificial intelligence research field, (Medina, J.; Ojeda-Aciego, M.; Galdeano, J. L.V.; Pelta, D. A.; Cabrera, I. P.; Bouchon-Meunier, B.; Yager, R. R., Proc. 17th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’18), Part I. Proc. 17th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’18), Part I, Cádiz, June 11-15. Proc. 17th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’18), Part I. Proc. 17th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’18), Part I, Cádiz, June 11-15, CCIS, vol. 853, 2018, Springer), 3-15
[11] Amgoud, L.; Ben-Naim, J., Axiomatic foundations of explainability, (Proc. 31st Int. Joint Conf. on Artificial Intelligence (IJCAI’22). Proc. 31st Int. Joint Conf. on Artificial Intelligence (IJCAI’22), Vienna, July 23-29, 2022), 636-642
[12] Amgoud, L.; Serrurier, M., Agents that argue and explain classifications, Auton. Agents Multi-Agent Syst., 16, 2, 187-209, 2008
[13] Amizadeh, S.; Matusevych, S.; Weimer, M., Learning to solve Circuit-SAT: an unsupervised differentiable approach, (Proc. 7th Int. Conf. on Learning Representations (ICLR’19). Proc. 7th Int. Conf. on Learning Representations (ICLR’19), New Orleans, May 6-9, 2019, OpenReview.net)
[14] Amizadeh, S.; Matusevych, S.; Weimer, M., PDP: a general neural framework for learning constraint satisfaction solvers, 2019, CoRR
[15] Amoussou, M.; Belahcène, K.; Labreuche, C.; Maudet, N.; Mousseau, V.; Ouerdane, W., Questionable stepwise explanations for a robust additive preference model, Int. J. Approx. Reason., 2023, this issue: 108982
[16] Ancona, M.; Ceolini, E.; Öztireli, A. C.; Gross, M. H., A unified view of gradient-based attribution methods for deep neural networks, CoRR, 2017
[17] Angelino, E.; Larus-Stone, N.; Alabi, D.; Seltzer, M.; Rudin, C., Learning certifiably optimal rule lists, (Proc. 23rd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining. Proc. 23rd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, Halifax, Aug. 13 - 17, 2017, ACM), 35-44
[18] Angelino, E.; Larus-Stone, N.; Alabi, D.; Seltzer, M.; Rudin, C., Learning certifiably optimal rule lists for categorical data, J. Mach. Learn. Res., 18, 234, 2017 · Zbl 1473.68134
[19] Angelopoulos, A. N.; Bates, S., Conformal prediction: a gentle introduction, Found. Trends Mach. Learn., 16, 4, 494-591, 2023 · Zbl 1507.68238
[20] Angluin, D., Queries and concept learning, Mach. Learn., 2, 4, 319-342, 1987 · Zbl 1470.68050
[21] Anjomshoae, S.; Najjar, A.; Calvaresi, D.; Främling, K., Explainable agents and robots: results from a systematic literature review, (AAMAS, 2019), 1078-1088
[22] Anthony, M.; Bartlett, P. L., Neural Network Learning: Theoretical Foundations, 2009, Cambridge University Press
[23] Antonucci, A.; Corani, G., Likelihood-based naive credal classifier, (Int. Symp. on Imprecise Probability: Theories and Applications (ISIPTA), vol. 11, 2011, Citeseer), 21-30
[24] Antonucci, A.; Corani, G., The multilabel naive credal classifier, Int. J. Approx. Reason., 83, 320-336, 2017 · Zbl 1404.68090
[25] Arcangioli, R.; Bessiere, C.; Lazaar, N., Multiple constraint acquisition, (Kambhampati, S., Proc. 25th Int. Joint Conf. on Artificial Intelligence (IJCAI’16). Proc. 25th Int. Joint Conf. on Artificial Intelligence (IJCAI’16), New York, July 9-15, 2016, IJCAI/AAAI Press), 698-704
[26] Arp, R.; Smith, B.; Spear, A., Building Ontologies with Basic Formal Ontology, 2015, MIT Press
[27] Assaghir, Z.; Kaytoue, M.; Prade, H., A possibility theory-oriented discussion of conceptual pattern structures, (Deshpande, A.; Hunter, A., Proc. 4th Int. Conf. (SUM’10) on Scalable Uncertainty Management. Proc. 4th Int. Conf. (SUM’10) on Scalable Uncertainty Management, Toulouse, Sept. 27-29. Proc. 4th Int. Conf. (SUM’10) on Scalable Uncertainty Management. Proc. 4th Int. Conf. (SUM’10) on Scalable Uncertainty Management, Toulouse, Sept. 27-29, LNCS, vol. 6379, 2010, Springer), 70-83
[28] Atif, J.; Bloch, I.; Hudelot, C., Some relationships between fuzzy sets, mathematical morphology, rough sets, f-transforms, and formal concept analysis, Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 24, Suppl. 2, 1-32, 2016 · Zbl 1377.68230
[29] Aung, A. M.; Fadila, Y.; Gondokaryono, R.; Gonzalez, L., Building robust deep neural networks for road sign detection, 2017, CoRR
[30] Ayel, M.; Rousset, M.-C., La Cohérence dans les Bases de Connaissances, 1990, Cepadues
[31] Baader, F.; Brandt, S.; Lutz, C., Pushing the EL envelope, (Kaelbling, L. P.; Saffiotti, A., Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05). Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05), Edinburgh, July 30 - Aug. 5, 2005), 364-369
[32] Baader, M.; Mirman, M.; Vechev, M. T., Universal approximation with certified networks, 2019, CoRR
[33] Baaj, I., Explainability of possibilistic and fuzzy rule-based systems, 2022, Sorbonne Université, PhD thesis
[34] Baaj, I., Learning rule parameters of possibilistic rule-based system, (Proc. 2022 IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE), 2022, IEEE), 1-8
[35] Baaj, I., On the handling of inconsistent systems of max-min fuzzy relational equations, Fuzzy Sets Syst., Article 108912 pp., 2024
[36] Baaj, I.; Poli, J.; Ouerdane, W.; Maudet, N., Min-max inference for possibilistic rule-based system, (Proc. 30th IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE’21). Proc. 30th IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE’21), Luxembourg, July 11-14, 2021, IEEE), 1-6
[37] Baaj, I.; Poli, J.-P.; Ouerdane, W.; Maudet, N., Representation of explanations of possibilistic inference decisions, (Proc. 16th European Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’21). Proc. 16th European Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’21), Prague, Sept. 21-24. Proc. 16th European Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’21). Proc. 16th European Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’21), Prague, Sept. 21-24, LNCS, vol. 12897, 2021, Springer), 513-527 · Zbl 07542365
[38] Babaki, B.; Guns, T.; Nijssen, S., Constrained clustering using column generation, (Integration of AI and OR Techniques in Constraint Programming - Proc. 11th Int. Conf. CPAIOR’14. Integration of AI and OR Techniques in Constraint Programming - Proc. 11th Int. Conf. CPAIOR’14, Cork, Ireland, May 19-23, 2014), 438-454 · Zbl 1407.68387
[39] Bach, S. H.; Broecheler, M.; Huang, B.; Getoor, L., Hinge-loss Markov random fields and probabilistic soft logic, J. Mach. Learn. Res., 18, 109, 2017 · Zbl 1435.68252
[40] Baget, J.; Benferhat, S.; Bouraoui, Z.; Croitoru, M.; Mugnier, M.; Papini, O.; Rocher, S.; Tabia, K., Inconsistency-tolerant query answering: rationality properties and computational complexity analysis, (Michael, L.; Kakas, A. C., Proc. 15th Europ. Conf. on Logics in Artificial Intelligence (JELIA’16). Proc. 15th Europ. Conf. on Logics in Artificial Intelligence (JELIA’16), Larnaca, Cyprus, Nov. 9-11. Proc. 15th Europ. Conf. on Logics in Artificial Intelligence (JELIA’16). Proc. 15th Europ. Conf. on Logics in Artificial Intelligence (JELIA’16), Larnaca, Cyprus, Nov. 9-11, LNCS, vol. 10021, 2016), 64-80 · Zbl 1483.68393
[41] Balabanović, M.; Shoham, Y., Fab: content-based, collaborative recommendation, Commun. ACM, 40, 3, 66-72, 1997
[42] Balkenius, C.; Gärdenfors, P., Nonmonotonic inferences in neural networks, (Proc. 2nd Int. Conf. on Princip. of Knowl. Represent. and Reas. (KR’91). Proc. 2nd Int. Conf. on Princip. of Knowl. Represent. and Reas. (KR’91), Cambridge, MA, 1991), 32-39 · Zbl 0765.68165
[43] M. Balunovic, P. Bielik, M.T. Vechev, Learning to solve SMT formulas, in: Bengio et al. [59], pp. 10338-10349.
[44] Baluta, T.; Shen, S.; Shinde, S.; Meel, K. S.; Saxena, P., Quantitative verification of neural networks and its security applications, (Cavallaro, L.; Kinder, J.; Wang, X.; Katz, J., Proc. of the 2019 ACM SIGSAC Conf. on Computer and Communications Security (CCS’19). Proc. of the 2019 ACM SIGSAC Conf. on Computer and Communications Security (CCS’19), London, Nov. 11-15, 2019, ACM), 1249-1264
[45] Bansal, K.; Loos, S. M.; Rabe, M. N.; Szegedy, C.; Wilcox, S., HOList: an environment for machine learning of higher order logic theorem proving, (Proc 36th Int. Conf. on Machine Learning (ICML’19). Proc 36th Int. Conf. on Machine Learning (ICML’19), Long Beach June 9-15, 2019), 454-463
[46] Barredo Arrieta, A.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; Chatila, R.; Herrera, F., Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible ai, Inf. Fusion, 58, 82-115, 2020
[47] Bastide, Y.; Pasquier, N.; Taouil, R.; Stumme, G.; Lakhal, L., Mining minimal non-redundant association rules using frequent closed itemsets, (Lloyd, J. W.; Dahl, V.; Furbach, U.; Kerber, M.; Lau, K.; Palamidessi, C.; Pereira, L. M.; Sagiv, Y.; Stuckey, P. J., Computational Logic - CL 2000, Proc. 1st Int. Conf.. Computational Logic - CL 2000, Proc. 1st Int. Conf., London, 24-28 July. Computational Logic - CL 2000, Proc. 1st Int. Conf.. Computational Logic - CL 2000, Proc. 1st Int. Conf., London, 24-28 July, LNCS, vol. 1861, 2000, Springer), 972-986 · Zbl 0983.68511
[48] Belahcene, K.; Labreuche, C.; Maudet, N.; Mousseau, V.; Ouerdane, W., Explaining robust additive utility models by sequences of preference swaps, Theory Decis., 82, 2, 151-183, 2017 · Zbl 1395.91099
[49] Beldiceanu, N.; Simonis, H., A model seeker: extracting global constraint models from positive examples, (Milano, M., Proc. 18th Int. Conf. on Principles and Practice of Constraint Programming (CP’12) Québec City. Proc. 18th Int. Conf. on Principles and Practice of Constraint Programming (CP’12) Québec City, Québec City, Oct. 8-12. Proc. 18th Int. Conf. on Principles and Practice of Constraint Programming (CP’12) Québec City. Proc. 18th Int. Conf. on Principles and Practice of Constraint Programming (CP’12) Québec City, Québec City, Oct. 8-12, LNCS, vol. 7514, 2012, Springer), 141-157
[50] Bello, I.; Pham, H.; Le, Q. V.; Norouzi, M.; Bengio, S., Neural combinatorial optimization with reinforcement learning, (Proc. 5th Int. Conf. on Learning Representations (ICLR’17). Proc. 5th Int. Conf. on Learning Representations (ICLR’17), Toulon, Apr. 24-26, 2017, OpenReview.net), 24-26
[51] Belohlavek, R., Fuzzy Relational Systems. Foundations and Principles, 2002, Kluwer · Zbl 1067.03059
[52] Bender, E. M.; Gebru, T.; McMillan-Major, A.; Shmitchell, S., On the dangers of stochastic parrots: can language models be too big?, (Elish, M. C.; Isaac, W.; Zemel, R. S., FAccT ’21: 2021 ACM Conf. on Fairness, Accountability, and Transparency, Virtual Event. FAccT ’21: 2021 ACM Conf. on Fairness, Accountability, and Transparency, Virtual Event, Toronto, March 3-10, 2021, 2021, ACM), 610-623
[53] Benferhat, S.; Dubois, D.; Garcia, L.; Prade, H., On the transformation between possibilistic logic bases and possibilistic causal networks, Int. J. Approx. Reason., 29, 2, 135-173, 2002 · Zbl 1015.68204
[54] Benferhat, S.; Dubois, D.; Lagrue, S.; Prade, H., A big-stepped probability approach for discovering default rules, Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 11, Supplement-1, 1-14, 2003 · Zbl 1072.68616
[55] Benferhat, S.; Dubois, D.; Prade, H., Some syntactic approaches to the handling of inconsistent knowledge bases: a comparative study. Part 1: the flat case, Stud. Log., 58, 1, 17-45, 1997 · Zbl 0867.68100
[56] Benferhat, S.; Dubois, D.; Prade, H., An overview of inconsistency-tolerant inferences in prioritized knowledge bases, (Dubois, D.; Prade, H.; Klement, E. P., Fuzzy Sets, Logics and Reasoning About Knowledge, 1999, Springer: Springer Netherlands, Dordrecht), 395-417 · Zbl 0942.68722
[57] Benferhat, S.; Dubois, D.; Prade, H., The possibilistic handling of irrelevance in exception-tolerant reasoning, Ann. Math. Artif. Intell., 35, 1-4, 29-61, 2002 · Zbl 1001.68139
[58] Benferhat, S.; Tabia, K., Inference in possibilistic network classifiers under uncertain observations, Ann. Math. Artif. Intell., 64, 2-3, 269-309, 2012 · Zbl 1252.68295
[59] (Bengio, S.; Wallach, H. M.; Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; Garnett, R., Advances in Neural Information Processing Systems 31: Annual Conf. on Neural Information Processing Systems (NeurIPS’18). Advances in Neural Information Processing Systems 31: Annual Conf. on Neural Information Processing Systems (NeurIPS’18), Dec. 3-8, Montréal, 2018)
[60] Bengio, Y.; Lodi, A.; Prouvost, A., Machine learning for combinatorial optimization: a methodological tour d’horizon, 2018, CoRR
[61] Bengio, Y.; Malkin, N., Machine learning and information theory concepts towards an ai mathematician, 2024, arXiv preprint · Zbl 1540.68224
[62] (Besnard, P.; Hunter, A.; Gabbay, D.; Smets, Ph., Reasoning with Actual and Potential Contradictions. Reasoning with Actual and Potential Contradictions, Handbook of Defeasible Reasoning and Uncertainty Management Systems Series, vol. 2, 1998, Kluwer Acad. Publ.) · Zbl 0908.90002
[63] Besold, T. R.; d’Avila Garcez, A. S.; Bader, S.; Bowman, H.; Domingos, P.; Hitzler, P.; Kühnberger, K.; Lamb, L. C.; Lima, P. M.V.; de Penning, L.; Pinkas, G.; Poon, H.; Zaverucha, G., Neural-symbolic learning and reasoning: a survey and interpretation, (Hitzler, P.; Sarker, M. K., Neuro-Symbolic Artificial Intelligence: The State of the Art. Neuro-Symbolic Artificial Intelligence: The State of the Art, Frontiers in Artificial Intelligence and Applications, vol. 342, 2021, IOS Press), 1-51, 2017, Also in CoRR
[64] Bessiere, C.; Carbonnel, C.; Dries, A.; Hebrard, E.; Katsirelos, G.; Narodytska, N.; Quimper, C.; Stergiou, K.; Tsouros, D. C.; Walsh, T., Learning constraints through partial queries, Artif. Intell., 319, Article 103896 pp., 2023 · Zbl 07702942
[65] Bessiere, C.; Carbonnel, C.; Himeur, A., Learning constraint networks over unknown constraint languages, (Proc. 32nd Int. Joint Conf. on Artificial Intelligence (IJCAI’23). Proc. 32nd Int. Joint Conf. on Artificial Intelligence (IJCAI’23), Macao, Aug. 19th-25th, 2023, ijcai.org), 1876-1883
[66] Bessiere, C.; Coletta, R.; Hebrard, E.; Katsirelos, G.; Lazaar, N.; Narodytska, N.; Quimper, C.; Walsh, T., Constraint acquisition via partial queries, (Rossi, F., Proc. 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI’13). Proc. 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI’13), Beijing, Aug. 3-9, 2013, IJCAI/AAAI), 475-481
[67] Bessiere, C.; Coletta, R.; Koriche, F.; O’Sullivan, B., A SAT-based version space algorithm for acquiring constraint satisfaction problems, (Gama, J.; Camacho, R.; Brazdil, P.; Jorge, A.; Torgo, L., Proc. 16th Europ. Conf. on Machine Learning (ECML’05). Proc. 16th Europ. Conf. on Machine Learning (ECML’05), Porto, Oct. 3-7. Proc. 16th Europ. Conf. on Machine Learning (ECML’05). Proc. 16th Europ. Conf. on Machine Learning (ECML’05), Porto, Oct. 3-7, LNCS, vol. 3720, 2005, Springer), 23-34
[68] Bessiere, C.; Coletta, R.; O’Sullivan, B.; Paulin, M., Query-driven constraint acquisition, (Veloso, M. M., Proc. 20th Int. Joint Conf. on Artificial Intelligence (IJCAI’07). Proc. 20th Int. Joint Conf. on Artificial Intelligence (IJCAI’07), Hyderabad, Jan. 6-12, 2007), 50-55
[69] Bessiere, C.; Hebrard, E.; O’Sullivan, B., Minimising decision tree size as combinatorial optimisation, (Gent, I. P., Principles and Practice of Constraint Programming - CP 2009, Proc. 15th Int. Conf. CP’09. Principles and Practice of Constraint Programming - CP 2009, Proc. 15th Int. Conf. CP’09, Lisbon, Sept. 20-24. Principles and Practice of Constraint Programming - CP 2009, Proc. 15th Int. Conf. CP’09. Principles and Practice of Constraint Programming - CP 2009, Proc. 15th Int. Conf. CP’09, Lisbon, Sept. 20-24, LNCS, vol. 5732, 2009, Springer), 173-187
[70] Bessiere, C.; Koriche, F.; Lazaar, N.; O’Sullivan, B., Constraint acquisition, Artif. Intell., 244, 315-342, 2017 · Zbl 1404.68139
[71] Bhatia, S.; Kohli, P.; Singh, R., Neuro-symbolic program corrector for introductory programming assignments, (Chaudron, M.; Crnkovic, I.; Chechik, M.; Harman, M., Proc. 40th Int. Conf. on Software Engineering (ICSE’18). Proc. 40th Int. Conf. on Software Engineering (ICSE’18), Gothenburg, May 27 - June 3, 2018, ACM), 60-70
[72] Biran, O.; Cotton, C., Explanation and justification in machine learning: a survey, (Proc. of the Workshop on eXplainable Artificial Intelligence, XAI@IJCAI, vol. 8, num. 1, 2017), 8-13
[73] Błaszczyński, J.; Słowiński, R.; Szelag, M., Sequential covering rule induction algorithm for variable consistency rough set approaches, Inf. Sci., 181, 5, 987-1002, 2011
[74] Blum, S.; Koudijs, R.; Ozaki, A.; Touileb, S., Learning Horn envelopes via queries from language models, Int. J. Approx. Reason., 2023, this issue: 109026
[75] Bodria, F.; Giannotti, F.; Guidotti, R.; Naretto, F.; Pedreschi, D.; Rinzivillo, S., Benchmarking and survey of explanation methods for black box models, Data Min. Knowl. Discov., 37, 1719-1778, 2023
[76] Bommasani, R.; Hudson, D.; Adeli, E.; Altman, R.; Arora, S.; Arx, S.; Bernstein, M.; Bohg, J.; Bosselut, A.; Brunskill, E.; Brynjolfsson, E.; Buch, S.; Card, D.; Castellon, R.; Chatterji, N.; Chen, A.; Creel, K.; Davis, J.; Demszky, D.; Liang, P., On the Opportunities and Risks of Foundation Models, 2021, CoRR
[77] Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O., Translating embeddings for modeling multi-relational data, (Advances in Neural Information Processing Systems, 2013), 2787-2795
[78] Bornscheuer, S.-E.; Hölldobler, S.; Kalinke, Y.; Strohmaier, A., Massively parallel reasoning, (Bibel, W.; Schmitt, P. H., Automated Deduction - a Basis for Applications. Volume II: Systems and Implementation Techniques, 1998, Springer), 291-321 · Zbl 1015.68541
[79] Boros, E.; Crama, Y.; Hammer, P. L.; Ibaraki, T.; Kogan, A.; Makino, K., Logical analysis of data: classification with justification, Ann. Oper. Res., 188, 1, 33-61, 2011 · Zbl 1230.68165
[80] Bounhas, M.; Pirlot, M.; Prade, H., Predicting preferences by means of analogical proportions, (Cox, M.; Funk, P.; Begum, S., Proc. 26th Int. Conf. on Case-Based Reasoning Research (ICCBR’18). Proc. 26th Int. Conf. on Case-Based Reasoning Research (ICCBR’18), Stockholm, July 9-12. Proc. 26th Int. Conf. on Case-Based Reasoning Research (ICCBR’18). Proc. 26th Int. Conf. on Case-Based Reasoning Research (ICCBR’18), Stockholm, July 9-12, LNCS, vol. 11156, 2018, Springer), 515-531
[81] Bounhas, M.; Pirlot, M.; Prade, H.; Sobrie, O., Comparison of analogy-based methods for predicting preferences, (Amor, N. B.; Quost, B.; Theobald, M., Proc. 13th Int. Conf on Scalable Uncertainty Management (SUM’19). Proc. 13th Int. Conf on Scalable Uncertainty Management (SUM’19), Compiègne, France, December 16-18. Proc. 13th Int. Conf on Scalable Uncertainty Management (SUM’19). Proc. 13th Int. Conf on Scalable Uncertainty Management (SUM’19), Compiègne, France, December 16-18, LNCS, vol. 11940, 2019, Springer), 339-354
[82] Bounhas, M.; Prade, H., Analogy-based classifiers: an improved algorithm exploiting competent data pairs, Int. J. Approx. Reason., 158, Article 108923 pp., 2023 · Zbl 07879230
[83] Bounhas, M.; Prade, H., Revisiting analogical proportions and analogical inference, Int. J. Approx. Reason., 2024, this issue: 2024 · Zbl 07885925
[84] Bounhas, M.; Prade, H.; Richard, G., Analogy-based classifiers for nominal or numerical data, Int. J. Approx. Reason., 91, 36-55, 2017 · Zbl 1419.68073
[85] Bouraoui, Z.; Cornuéjols, A.; Denoeux, T.; Destercke, S.; Dubois, D.; Guillaume, R.; Marques-Silva, J.; Mengin, J.; Prade, H.; Schockaert, S.; Serrurier, M.; Vrain, C., From shallow to deep interactions between knowledge representation, reasoning and machine learning (Kay R. Amel group), 2019, CoRR
[86] Bouraoui, Z.; Schockaert, S., Learning conceptual space representations of interrelated concepts, (Proc. 27th Int. Joint Conf. on Artificial Intelligence, (IJCAI’18). Proc. 27th Int. Joint Conf. on Artificial Intelligence, (IJCAI’18), Stockholm, July. 13-19, 2018), 1760-1766
[87] Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.; Poole, D., CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements, J. Artif. Intell. Res., 21, 135-191, 2004 · Zbl 1080.68685
[88] Brabant, Q.; Couceiro, M.; Dubois, D.; Prade, H.; Rico, A., Extracting decision rules from qualitative data via Sugeno utility functionals, (Medina, J.; Ojeda-Aciego, M.; Galdeano, J. L.V.; Pelta, D. A.; Cabrera, I. P.; Bouchon-Meunier, B.; Yager, R. R., Proc. 17th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’18), Part I. Proc. 17th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’18), Part I, Cádiz, June 11-15. Proc. 17th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’18), Part I. Proc. 17th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’18), Part I, Cádiz, June 11-15, CCIS, vol. 853, 2018, Springer), 253-265 · Zbl 1512.68334
[89] (Brewka, G.; Marek, V. W.; Truszczynski, M., Nonmonotonic Reasoning. Essays Celebrating Its 30th Anniversary. Nonmonotonic Reasoning. Essays Celebrating Its 30th Anniversary, Studies in Logic, vol. 31, 2011, College Publication)
[90] Brix, C.; Müller, M. N.; Bak, S.; Johnson, T. T.; Liu, C., First three years of the international verification of neural networks competition (VNN-COMP), Int. J. Softw. Tools Technol. Transf., 25, 3, 329-339, 2023
[91] (Bromberger, S., On What We Know We Don’t Know: Explanation, Theory, Linguistics, and How Questions Shape Them, 1992, University of Chicago Press)
[92] Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A., Language models are few-shot learners, (Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M.; Lin, H., Advances in Neural Information Processing Systems, vol. 33, 2020, Curran Associates, Inc.), 1877-1901
[93] Bunel, R.; Hausknecht, M. J.; Devlin, J.; Singh, R.; Kohli, P., Leveraging grammar and reinforcement learning for neural program synthesis, (Proc. 6th Int. Conf. on Learning Representations (ICLR’18). Proc. 6th Int. Conf. on Learning Representations (ICLR’18), Vancouver, Apr. 30 - May 3, 2018, OpenReview.net)
[94] Bunel, R.; Lu, J.; Turkaslan, I.; Torr, P. H.S.; Kohli, P.; Kumar, M. P., Branch and bound for piecewise linear neural network verification, 2019, CoRR
[95] Bunel, R.; Turkaslan, I.; Torr, P. H.S.; Kohli, P.; Kumar, M. P., Piecewise linear neural network verification: a comparative study, 2017, CoRR
[96] Bunel, R.; Turkaslan, I.; Torr, P. H.S.; Kohli, P.; Mudigonda, P. K., A unified view of piecewise linear neural network verification, (Advances in Neural Information Processing Systems 31: Annual Conf. on Neural Information Processing Systems (NeurIPS’18). Advances in Neural Information Processing Systems 31: Annual Conf. on Neural Information Processing Systems (NeurIPS’18), 3-8 Dec., Montréa, 2018), 4795-4804
[97] Burkart, N.; Huber, M. F., A survey on the explainability of supervised machine learning, J. Artif. Intell. Res., 70, 245-317, 2021 · Zbl 1497.68412
[98] Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.; Dl-lite, R. Rosati, Tractable description logics for ontologies, (Veloso, M. M.; Kambhampati, S., Proc. 20th National Conf. on Artificial Intelligence (AAAI’05). Proc. 20th National Conf. on Artificial Intelligence (AAAI’05), July 9-13, Pittsburgh, 2005, AAAI Press/The MIT Press), 602-607
[99] Campagner, A., Learning from fuzzy labels: theoretical issues and algorithmic solutions, Int. J. Approx. Reason., 2023, this issue: 108969
[100] Campagner, A.; Ciucci, D.; Denœux, T., Belief functions and rough sets: survey and new insights, Int. J. Approx. Reason., 143, 192-215, 2022 · Zbl 07478971
[101] Canabal-Juanatey, M.; Alonso-Moral, J. M.; Catala, A.; Bugarín-Diz, A., Enriching interactive explanations with fuzzy temporal constraint networks, Int. J. Approx. Reason., 2024, this issue: 109128 · Zbl 07885916
[102] Cardelli, L.; Kwiatkowska, M.; Laurenti, L.; Paoletti, N.; Patane, A.; Wicker, M., Statistical guarantees for the robustness of Bayesian neural networks, (Kraus, S., Proc. 28th Int. Joint Conf. on Artificial Intelligence (IJCAI’19). Proc. 28th Int. Joint Conf. on Artificial Intelligence (IJCAI’19), Macao, Aug. 10-16, 2019, ijcai.org), 5693-5700
[103] Carnielli, W.; Coniglio, M., Paraconsistent Logic: Consistency, Contradiction and Negation, 2016, Springer · Zbl 1355.03001
[104] Castro, J., Fuzzy logic controllers are universal approximators, IEEE Trans. Syst. Man Cybern., 25, 629-635, 1995
[105] Chakraborty, A.; Alam, M.; Dey, V.; Chattopadhyay, A.; Mukhopadhyay, D., Adversarial attacks and defences: a survey, 2018, CoRR
[106] Chalasani, P.; Jha, S.; Sadagopan, A.; Wu, X., Adversarial learning and explainability in structured datasets, 2018, CoRR
[107] Chang, M.-W.; Ratinov, L.-A.; Roth, D.; Srikumar, V., Importance of semantic representation: dataless classification, (Proc.of the 23rd AAAI Conf.on Artificial Intelligence (AAAI’08), vol. 2. Proc.of the 23rd AAAI Conf.on Artificial Intelligence (AAAI’08), vol. 2, Chicago, July 13-17, 2008), 830-835
[108] Chapelle, O.; Schölkopf, B.; Zien, A., Semi-Supervised Learning, 2006, MIT Press
[109] Charnay, L.; Dibie, J.; Loiseau, S., Validation and explanation, (Marquis, P.; Papini, O.; Prade, H., A Guided Tour of Artificial Intelligence Research. Vol. 1: Knowledge Representation, Reasoning and Learning, 2019, Springer)
[110] Chein, M.; Mugnier, M.-L., Graph-Based Knowledge Representation: Computational Foundations of Conceptual Graphs, 2009, Springer: Springer Princeton, N.J. · Zbl 1168.68043
[111] Chen, D.; Bai, Y.; Zhao, W.; Ament, S.; Gregoire, J. M.; Gomes, C. P., Deep reasoning networks: thinking fast and slow, 2019, CoRR
[112] Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I.; Infogan, P. Abbeel, Interpretable representation learning by information maximizing generative adversarial nets, (Advances in Neural Information Processing Systems, 2016), 2172-2180
[113] Chen, Y.; Huang, H.; Darwiche, A., Towards an effective practice of learning from data and knowledge, Int. J. Approx. Reason., 2024, this issue: 109188 · Zbl 07885923
[114] Chen, Z.; Yang, Z., Graph neural reasoning may fail in certifying Boolean unsatisfiability, 2019, CoRR
[115] Cheng, W.; Hüllermeier, E.; Waegeman, W.; Welker, V., Label ranking with partial abstention based on thresholded probabilistic models, (Bartlett, P. L.; Pereira, F. C.N.; Burges, C. J.C.; Bottou, L.; Weinberger, K. Q., Advances in Neural Information Processing Systems 25: 26th Annual Conf. on Neural Information Processing Systems 2012, Proc. of a Meeting Held. Advances in Neural Information Processing Systems 25: 26th Annual Conf. on Neural Information Processing Systems 2012, Proc. of a Meeting Held, December 3-6, Lake Tahoe, Nevada, 2012), 2510-2518
[116] Cherfi, Z. L.; Oukhellou, L.; Côme, E.; Denœux, T.; Aknin, P., Partially supervised independent factor analysis using soft labels elicited from multiple experts: application to railway track circuit diagnosis, Soft Comput., 16, 5, 741-754, 2012
[117] Chikalov, I.; Lozin, V. V.; Lozina, I.; Moshkov, M.; Nguyen, H. S.; Skowron, A.; Zielosko, B., Three Approaches to Data Analysis - Test Theory, Rough Sets and Logical Analysis of Data, Intelligent Systems Reference Library, vol. 41, 2013, Springer · Zbl 1254.68005
[118] Chromik, M.; Butz, A., Human-XAI interaction: a review and design principles for explanation user interfaces, (Proc. of the 8th IFIP TC 13 Int. Conf. on Human-Computer Interaction, INTERACT21, 2021), 619-640
[119] Chvalovský, K.; Jakubuv, J.; Suda, M.; Urban, J., ENIGMA-NG: efficient neural and gradient-boosted inference guidance for E, (Fontaine, P., Proc. 27th Int. Conf. on Automated Deduction (CADE’19). Proc. 27th Int. Conf. on Automated Deduction (CADE’19), Natal, Brazil, Aug. 27-30. Proc. 27th Int. Conf. on Automated Deduction (CADE’19). Proc. 27th Int. Conf. on Automated Deduction (CADE’19), Natal, Brazil, Aug. 27-30, LNCS, vol. 11716, 2019, Springer), 197-215 · Zbl 1535.68449
[120] Cid-Sueiro, J., Proper losses for learning from partial labels, (Advances in Neural Information Processing Systems, 2012), 1565-1573
[121] Cohen, R.; Geva, M.; Berant, J.; Globerson, A., Crawling the internal knowledge-base of language models, (Vlachos, A.; Augenstein, I., Findings of the Association for Computational Linguistics: EACL 2023, May 2023, Association for Computational Linguistics: Association for Computational Linguistics Dubrovnik, Croatia), 1856-1869
[122] Cohen, W. W.; Yang, F.; Mazaitis, K., TensorLog: a probabilistic database implemented using deep-learning infrastructure, J. Artif. Intell. Res., 67, 285-325, 2020 · Zbl 1434.68141
[123] Coletta, R.; Bessière, C.; O’Sullivan, B.; Freuder, E. C.; O’Connell, S.; Quinqueton, J., Semi-automatic modeling by constraint acquisition, (Rossi, F., Proc. 9th Int. Conf. on Principles and Practice of Constraint Programming (CP’03). Proc. 9th Int. Conf. on Principles and Practice of Constraint Programming (CP’03), Kinsale, Ireland, Sept. 29 - Oct. 3. Proc. 9th Int. Conf. on Principles and Practice of Constraint Programming (CP’03). Proc. 9th Int. Conf. on Principles and Practice of Constraint Programming (CP’03), Kinsale, Ireland, Sept. 29 - Oct. 3, LNCS, vol. 2833, 2003, Springer), 812-816
[124] Corani, G.; Antonucci, A.; Zaffalon, M., Bayesian networks with imprecise probabilities: theory and application to classification, (Data Mining: Foundations and Intelligent Paradigms, 2012, Springer), 49-93 · Zbl 1231.68194
[125] Cornuéjols, A., Some thoughts about transfer learning. What role for the source domain?, Int. J. Approx. Reason., Article 109107 pp., 2023
[126] Cornuéjols, A., Reprint of: Some thoughts about transfer learning. What role for the source domain?, Int. J. Approx. Reason., 2024, this issue: 109146 · Zbl 07885919
[127] Cornuejols, A.; Koriche, F.; Nock, R., Statistical computational learning, (Marquis, P.; Papini, O.; Prade, H., A Guided Tour of Artificial Intelligence Research. Vol. 1 Knowledge Representation, Reasoning and Learning, 2020, Springer-Verlag), 341-388 · Zbl 1515.68040
[128] Cornuejols, A.; Vrain, C., Designing algorithms for machine learning and data mining, (Marquis, P.; Papini, O.; Prade, H., A Guided Tour of Artificial Intelligence Research. Vol. 2 Artificial Intelligence Algorithms, 2020, Springer-Verlag), 339-410
[129] Coste-Marquis, S.; Marquis, P., On belief change for multi-label classifier encodings, (Zhou, Z., Proc. of the 30th Int. Joint Conf. on Artificial Intelligence (IJCAI’21), Virtual Event. Proc. of the 30th Int. Joint Conf. on Artificial Intelligence (IJCAI’21), Virtual Event, Montreal, Aug. 19-27, 2021, ijcai.org), 1829-1836
[130] Couceiro, M.; Hug, N.; Prade, H.; Richard, G., Analogy-preserving functions: a way to extend Boolean samples, (Proc. 26th Int. Joint Conf. on Artificial Intelligence, (IJCAI’17). Proc. 26th Int. Joint Conf. on Artificial Intelligence, (IJCAI’17), Melbourne, Aug. 19-25, 2017), 1575-1581
[131] Couceiro, M.; Hug, N.; Prade, H.; Richard, G., Behavior of analogical inference w.r.t. Boolean functions, (Proc. 27th Int. Joint Conf. on Artificial Intelligence, (IJCAI’18). Proc. 27th Int. Joint Conf. on Artificial Intelligence, (IJCAI’18), Stockholm, July. 13-19, 2018), 2057-2063
[132] Cour, T.; Sapp, B.; Taskar, B., Learning from partial labels, J. Mach. Learn. Res., 12, 1501-1536, May 2011 · Zbl 1280.68162
[133] Courty, N.; Flamary, R.; Tuia, D.; Rakotomamonjy, A., Optimal transport for domain adaptation, IEEE Trans. Pattern Anal. Mach. Intell., 39, 9, 1853-1865, 2016
[134] Couso, I.; Dubois, D., Belief revision and the EM algorithm, (Carvalho, J. P.; Lesot, M.; Kaymak, U.; Vieira, S. M.; Bouchon-Meunier, B.; Yager, R. R., Proc. 16th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU16), Part II. Proc. 16th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU16), Part II, CCIS, vol. 611, 2016, Springer), 279-290 · Zbl 1455.68204
[135] Couso, I.; Dubois, D., A general framework for maximizing likelihood under incomplete data, Int. J. Approx. Reason., 93, 238-260, 2018 · Zbl 1452.68205
[136] Couso, I.; Dubois, D.; Hüllermeier, E., Maximum likelihood estimation and coarse data, (Moral, S.; Pivert, O.; Sánchez, U.; Marín, N., Proc 11th Int. Conf. on Scalable Uncertainty Management (SUM’17). Proc 11th Int. Conf. on Scalable Uncertainty Management (SUM’17), Granada, Oct. 4-6. Proc 11th Int. Conf. on Scalable Uncertainty Management (SUM’17). Proc 11th Int. Conf. on Scalable Uncertainty Management (SUM’17), Granada, Oct. 4-6, LNCS, vol. 10564, 2017, Springer), 3-16 · Zbl 1498.62354
[137] Couso, I.; Sánchez, L., Machine learning models, epistemic set-valued data and generalized loss functions: an encompassing approach, Inf. Sci., 358, 129-150, 2016 · Zbl 1427.68263
[138] Cozman, F. G., Credal networks, Artif. Intell., 120, 2, 199-233, 2000 · Zbl 0945.68163
[139] Cozman, F. G., Graphical models for imprecise probabilities, Int. J. Approx. Reason., 39, 167-184, 2005 · Zbl 1099.68111
[140] Cozman, F. G., Languages for probabilistic modeling over structured domains, (Marquis, P.; Papini, O.; Prade, H., A Guided Tour of Artificial Intelligence Research. Vol. 2 Artificial Intelligence Algorithms, 2020, Springer-Verlag), 247-283 · Zbl 1515.68042
[141] Dai, W.; Xu, Q.; Yu, Y.; Zhou, Z., Tunneling neural perception and logic reasoning through abductive learning, 2018, CoRR
[142] d’Alché-Buc, F.; Andrés, V.; Nadal, J., Rule extraction with fuzzy neural network, Int. J. Neural Syst., 5, 1, 1-11, 1994
[143] Dao, T.; Duong, K.; Vrain, C., Constrained clustering by constraint programming, Artif. Intell., 244, 70-94, 2017 · Zbl 1404.68141
[144] Dao, T.; Vrain, C.; Duong, K.; Davidson, I., A framework for actionable clustering using constraint programming, (ECAI 2016 - 22nd European Conf. on Artificial Intelligence. ECAI 2016 - 22nd European Conf. on Artificial Intelligence, 29 Aug. - 2 Sept. 2016, The Hague, 2016), 453-461
[145] Dao, T.-B.-H.; Vrain, C., A review on declarative approaches for constrained clustering, Int. J. Approx. Reason., 2024, this issue: 109135 · Zbl 07885918
[146] Darwiche, A., Logic for explainable AI, (Proc. 38th Annual ACM/IEEE Symp.on Logic in Computer Science (LICS). Proc. 38th Annual ACM/IEEE Symp.on Logic in Computer Science (LICS), Boston, June 26-29, 2023), 1-11
[147] Darwiche, A.; Hirth, A., On the reasons behind decisions, (Proc. 24th European Conf. on Artificial Intelligence (ECAI’20). Proc. 24th European Conf. on Artificial Intelligence (ECAI’20), Santiago de Compostela, Aug. 29 - Sept. 8, 2020), 712-720 · Zbl 1464.68307
[148] Darwiche, A.; Marquis, P., A knowledge compilation map, J. Artif. Intell. Res., 17, 229-264, 2002 · Zbl 1045.68131
[149] Darwiche, A.; Marquis, P., On quantifying literals in Boolean logic and its applications to explainable AI, J. Artif. Intell. Res., 72, 285-328, 2021 · Zbl 1522.68526
[150] d’Ascoli, S.; Bengio, S.; Susskind, J.; Boolformer, E. Abbé, Symbolic Regression of Logic Functions with Transformers, 2023
[151] Dastin, J., Amazon scraps secret ai recruiting tool that showed bias against women, (Reuters, 2018)
[152] Davidson, I.; Ravi, S. S.; Shamis, L., A sat-based framework for efficient constrained clustering, (Proc. SIAM Int. Conf. on Data Mining (SDM’10). Proc. SIAM Int. Conf. on Data Mining (SDM’10), April 29 - May 1, Columbus, Ohio, 2010), 94-105
[153] d’Avila Garcez, A. S.; Broda, K.; Gabbay, D. M., Symbolic knowledge extraction from trained neural networks: a sound approach, Artif. Intell., 125, 1-2, 155-207, 2001 · Zbl 0969.68124
[154] d’Avila Garcez, A. S.; Broda, K. B.; Gabbay, D. M., Neural-Symbolic Learning Systems: Foundations and Applications, 2002, Springer Science & Business Media · Zbl 1055.68090
[155] d’Avila Garcez, A. S.; Gori, M.; Lamb, L. C.; Serafini, L.; Spranger, M.; Tran, S. N., Neural-symbolic computing: an effective methodology for principled integration of machine learning and reasoning, 2019, CoRR
[156] (d’Avila Garcez, A. S.; Jiménez-Ruiz, E., Proc.of the 16th Int. Workshop on Neural-Symbolic Learning and Reasoning as Part of the 2nd Int. Joint Conf. on Learning & Reasoning (IJCLR 2022). Proc.of the 16th Int. Workshop on Neural-Symbolic Learning and Reasoning as Part of the 2nd Int. Joint Conf. on Learning & Reasoning (IJCLR 2022), Cumberland Lodge, Windsor Great Park, Sept. 28-30. Proc.of the 16th Int. Workshop on Neural-Symbolic Learning and Reasoning as Part of the 2nd Int. Joint Conf. on Learning & Reasoning (IJCLR 2022). Proc.of the 16th Int. Workshop on Neural-Symbolic Learning and Reasoning as Part of the 2nd Int. Joint Conf. on Learning & Reasoning (IJCLR 2022), Cumberland Lodge, Windsor Great Park, Sept. 28-30, CEUR Workshop Proceedings, vol. 3212, 2022, CEUR-WS.org)
[157] d’Avila Garcez, A. S.; Lamb, L. C., Reasoning about time and knowledge in neural symbolic learning systems, (Thrun, S.; Saul, L. K.; Schölkopf, B., Advances in Neural Information Processing Systems 16 (NIPS 2003), 2003, MIT Press), 921-928
[158] d’Avila Garcez, A. S.; Lamb, L. C.; Gabbay, D. M., Neural-symbolic intuitionistic reasoning, (Abraham, A.; Köppen, M.; Franke, K., Proc. 3rd Int. Conf. on Hybrid Intelligent Systems. Proc. 3rd Int. Conf. on Hybrid Intelligent Systems, Frontiers in Artificial Intelligence and Applications, vol. 105, 2003, IOS Press), 399-408
[159] d’Avila Garcez, A. S.; Lamb, L. C.; Gabbay, D. M., Connectionist computations of intuitionistic reasoning, Theor. Comput. Sci., 358, 1, 34-55, 2006 · Zbl 1097.68119
[160] d’Avila Garcez, A. S.; Lamb, L. C.; Gabbay, D. M., Connectionist modal logic: representing modalities in neural networks, Theor. Comput. Sci., 371, 1-2, 34-53, 2007 · Zbl 1108.68103
[161] d’Avila Garcez, A. S.; Lamb, L. C.; Gabbay, D. M., Neural-Symbolic Cognitive Reasoning. Cognitive Technologies, 2009, Springer · Zbl 1188.68241
[162] d’Avila Garcez, A. S.; Zaverucha, G., The connectionist inductive learning and logic programming system, Appl. Intell., 11, 1, 59-77, 1999
[163] De Cooman, G.; Zaffalon, M., Updating beliefs with incomplete observations, Artif. Intell., 159, 1-2, 75-125, 2004 · Zbl 1086.68599
[164] De Finetti, B., La logique des probabilités, (Congrès Int. de Philosophie Scientifique, 1936, Hermann et Cie: Hermann et Cie Paris, France), 1-9
[165] De Raedt, L., Logical and Relational Learning, 2008, Springer · Zbl 1203.68145
[166] De Raedt, L.; Dries, A.; Guns, T.; Bessiere, C., Learning constraint satisfaction problems: an ILP perspective, (Bessiere, C.; De Raedt, L.; Kotthoff, L.; Nijssen, S.; O’Sullivan, B.; Pedreschi, D., Data Mining and Constraint Programming - Foundations of a Cross-Disciplinary Approach. Data Mining and Constraint Programming - Foundations of a Cross-Disciplinary Approach, LNCS, vol. 10101, 2016, Springer), 96-112 · Zbl 1461.68178
[167] De Raedt, L.; Dumancic, S.; Manhaeve, R.; Marra, G., From statistical relational to neuro-symbolic artificial intelligence, (Bessiere, C., Proc. 29th Int. Joint Conf. on Artificial Intelligence (IJCAI’20), 2020, ijcai.org), 4943-4950
[168] (De Raedt, L.; Frasconi, P.; Kersting, K.; Muggleton, S., Probabilistic Inductive Logic Programming - Theory and Applications. Probabilistic Inductive Logic Programming - Theory and Applications, LNCS, vol. 4911, 2008, Springer) · Zbl 1132.68007
[169] De Raedt, L.; Guns, T.; Nijssen, S., Constraint programming for itemset mining, (Proc. 14th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining. Proc. 14th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, Las Vegas, Aug. 24-27, 2008), 204-212
[170] De Raedt, L.; Guns, T.; Nijssen, S., Constraint programming for data mining and machine learning, (Proc. 24th AAAI Conf. on Artificial Intelligence, (AAAI’10). Proc. 24th AAAI Conf. on Artificial Intelligence, (AAAI’10), Atlanta, July 11-15, 2010)
[171] De Raedt, L.; Kersting, K.; Natarajan, S.; Poole, D., Statistical Relational Artificial Intelligence: Logic, Probability, and Computation. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2016, Morgan & Claypool Publishers · Zbl 1352.68005
[172] De Raedt, L.; Kimmig, A.; Toivonen, H., Problog. A probabilistic prolog and its application in link discovery, (Proc. 20th Int. Joint Conf. on Artificial Intelligence (IJCAI’07). Proc. 20th Int. Joint Conf. on Artificial Intelligence (IJCAI’07), Hyderabad, Jan. 6-12, 2007), 2462-2467
[173] De Raedt, L.; Passerini, A.; Teso, S., Learning constraints from examples, (McIlraith, S. A.; Weinberger, K. Q., Proc. 32nd AAAI Conf. on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symp. on Educational Advances in Artificial Intelligence (EAAI-18). Proc. 32nd AAAI Conf. on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symp. on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Feb. 2-7, 2018, AAAI Press), 7965-7970
[174] DeJong, G.; Mooney, R., Explanation-based learning: an alternative view, Mach. Learn., 1, 145-176, 1986
[175] Demirovic, E.; Lukina, A.; Hebrard, E.; Chan, J.; Bailey, J.; Leckie, C.; Ramamohanarao, K.; Murtree, P. J. Stuckey, Optimal decision trees via dynamic programming and search, J. Mach. Learn. Res., 23, 26, 2022 · Zbl 07625179
[176] Dempster, A., Upper and lower probabilities induced by a multivalued mapping, Ann. Math. Stat., 38, 325-339, 1967 · Zbl 0168.17501
[177] Dempster, A. P.; Laird, N. M.; Rubin, D. B., Maximum likelihood from incomplete data via the em algorithm, J. R. Stat. Soc. Ser. B, 39, 1, 1-38, 1977 · Zbl 0364.62022
[178] Denœux, T., A k-nearest neighbor classification rule based on Dempster-Shafer theory, IEEE Trans. Syst. Man Cybern., 25, 05, 804-813, 1995
[179] Denœux, T., A neural network classifier based on Dempster-Shafer theory, IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum., 30, 2, 131-150, 2000
[180] Denœux, T., Maximum likelihood estimation from uncertain data in the belief function framework, IEEE Trans. Knowl. Data Eng., 25, 1, 119-130, 2013
[181] Denœux, T., Logistic regression, neural networks and Dempster-Shafer theory: a new perspective, Knowl.-Based Syst., 176, 54-67, 2019
[182] Denœux, T., Belief functions induced by random fuzzy sets: a general framework for representing uncertain and fuzzy evidence, Fuzzy Sets Syst., 424, 63-91, 2021 · Zbl 1522.68561
[183] Denœux, T., Quantifying prediction uncertainty in regression using random fuzzy sets: the ENNreg model, IEEE Trans. Fuzzy Syst., 31, 3690-3699, 2023
[184] Denœux, T., Reasoning with fuzzy and uncertain evidence using epistemic random fuzzy sets: general framework and practical models, Fuzzy Sets Syst., 453, 1-36, 2023 · Zbl 1522.03247
[185] Denœux, T., Uncertainty quantification in logistic regression using random fuzzy sets and belief functions, Int. J. Approx. Reason., 168, Article 109159 pp., 2024 · Zbl 07858399
[186] Denœux, T.; Dubois, D.; Prade, H., Representations of uncertainty in artificial intelligence: beyond probability and possibility, (Marquis, P.; Papini, O.; Prade, H., A Guided Tour of Artificial Intelligence Research, vol. 1, Chapter 4, 2020, Springer Verlag), 119-150
[187] Denœux, T.; Dubois, D.; Prade, H., Representations of uncertainty in artificial intelligence: probability and possibility, (Marquis, P.; Papini, O.; Prade, H., A Guided Tour of Artificial Intelligence Research, vol. 1, Chapter 3, 2020, Springer Verlag), 69-117
[188] Denœux, T.; Kanjanatarakul, O.; Sriboonchitta, S., A new evidential k-nearest neighbor rule based on contextual discounting with partially supervised learning, Int. J. Approx. Reason., 113, 287-302, 2019 · Zbl 1468.68151
[189] Denœux, T.; Li, S., Frequency-calibrated belief functions: review and new insights, Int. J. Approx. Reason., 92, 232-254, 2018 · Zbl 1423.68503
[190] Denœux, T.; Masson, M.-H., Evidential reasoning in large partially ordered sets: application to multi-label classification, ensemble clustering and preference aggregation, Ann. Oper. Res., 195, 135-161, 2012 · Zbl 1251.68240
[191] Denœux, T.; Zouhal, L. M., Handling possibilistic labels in pattern classification using evidential reasoning, Fuzzy Sets Syst., 122, 3, 47-62, 2001
[192] Derkinderen, V.; Manhaeve, R.; Zuidberg Dos Martires, P.; De Raedt, L., Semirings for probabilistic and neuro-symbolic logic programming, Int. J. Approx. Reason., 2024, this issue: 109130 · Zbl 07885917
[193] Derrac, J.; Schockaert, S., Inducing semantic relations from conceptual spaces: a data-driven approach to plausible reasoning, Artif. Intell., 74-105, 2015 · Zbl 1319.68212
[194] Destercke, S., Uncertain data in learning: challenges and opportunities, (Johansson, U.; Boström, H.; Nguyen, K. A.; Luo, Z.; Carlsson, L., Proc. 11th Symp. on Conformal and Probabilistic Prediction with Applications. Proc. 11th Symp. on Conformal and Probabilistic Prediction with Applications, 24-26 Aug. 2022, Brighton. Proc. 11th Symp. on Conformal and Probabilistic Prediction with Applications. Proc. 11th Symp. on Conformal and Probabilistic Prediction with Applications, 24-26 Aug. 2022, Brighton, Proceedings of Machine Learning Research, vol. 179, 2022, PMLR), 322-332
[195] Diligenti, M.; Gori, M.; Maggini, M.; Rigutini, L., Bridging logic and kernel machines, Mach. Learn., 86, 1, 57-88, 2012 · Zbl 1243.68238
[196] Dimanov, B.; Bhatt, U.; Jamnik, M.; Weller, A., You shouldn’t trust me: learning models which conceal unfairness from multiple explanation methods, (Giacomo, G. D.; Catalá, A.; Dilkina, B.; Milano, M.; Barro, S.; Bugarín, A.; Lang, J., Proc. 24th European Conf. on Artificial Intelligence (ECAI’20). Proc. 24th European Conf. on Artificial Intelligence (ECAI’20), Santiago de Compostela, Aug. 29 - Sept. 8. Proc. 24th European Conf. on Artificial Intelligence (ECAI’20). Proc. 24th European Conf. on Artificial Intelligence (ECAI’20), Santiago de Compostela, Aug. 29 - Sept. 8, Frontiers in Artificial Intelligence and Applications, vol. 325, 2020, IOS Press), 2473-2480
[197] Dittadi, A.; Bolander, T.; Winther, O., Learning to plan from raw data in grid-based games, (Lee, D. D.; Steen, A.; Walsh, T., GCAI-2018, 4th Global Conf. on Artificial Intelligence. GCAI-2018, 4th Global Conf. on Artificial Intelligence, Luxembourg, Sept. 18-21. GCAI-2018, 4th Global Conf. on Artificial Intelligence. GCAI-2018, 4th Global Conf. on Artificial Intelligence, Luxembourg, Sept. 18-21, EPiC Series in Computing, vol. 55, 2018, EasyChair), 54-67
[198] Domshlak, C.; Hüllermeier, E.; Kaci, S.; Prade, H., Preferences in AI: an overview, Artif. Intell., 175, 7-8, 1037-1052, 2011
[199] Donadello, I.; Serafini, L.; d’Avila Garcez, A. S., Logic tensor networks for semantic image interpretation, (Sierra, C., Proc. of the 26th Int. Joint Conf. on Artificial Intelligence (IJCAI’17), 2017, ijcai.org), 1596-1602
[200] Dong, H.; Mao, J.; Lin, T.; Wang, C.; Li, L.; Zhou, D., Neural logic machines, (Proc. 7th Int. Conf. on Learning Representations (ICLR’19). Proc. 7th Int. Conf. on Learning Representations (ICLR’19), New Orleans, May 6-9, 2019, OpenReview.net)
[201] Doshi-Velez, F.; Kim, B., Towards a rigorous science of interpretable machine learning, 2017
[202] Dosilovic, F. K.; Brcic, M.; Hlupic, N., Explainable artificial intelligence: a survey, (Proc. 41st Int. Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO’18). Proc. 41st Int. Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO’18), Opatija, Croatia, May 21-25, 2018, IEEE), 210-215
[203] Dreossi, T.; Fremont, D. J.; Ghosh, S.; Kim, E.; Ravanbakhsh, H.; Vazquez-Chanlatte, M.; Seshia, S. A., VERIFAI: a toolkit for the design and analysis of artificial intelligence-based systems, 2019, CoRR
[204] Dressel, J.; Farid, H., The accuracy, fairness, and limits of predicting recidivism, Sci. Adv., 4, 1, Article eaao5580 pp., 2018
[205] Duan, K.; Keerthi, S. S.; Chu, W.; Shevade, S. K.; Poo, A. N., Multi-category classification by soft-max combination of binary classifiers, (Windeatt, T.; Roli, F., Proc. 4th Int. Workshop on Multiple Classifier Systems (MCS 2003). Proc. 4th Int. Workshop on Multiple Classifier Systems (MCS 2003), LNCS, vol. 2709, 2003, Springer), 125-134 · Zbl 1040.68617
[206] Dubois, D., Possibility theory and statistical reasoning, Comput. Stat. Data Anal., 51, 1, 47-69, 2006 · Zbl 1157.62309
[207] Dubois, D.; Hüllermeier, E., Comparing probability measures using possibility theory: a notion of relative peakedness, Int. J. Approx. Reason., 45, 2, 364-385, 2007 · Zbl 1122.68133
[208] Dubois, D.; Hüllermeier, E.; Prade, H., A systematic approach to the assessment of fuzzy association rules, Data Min. Knowl. Discov., 13, 2, 167-192, 2006
[209] Dubois, D.; Lang, J.; Prade, H., Possibilistic logic, (Gabbay, D.; Hogger, C.; Robinson, J.; Nute, D., Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, 1994, Oxford University Press), 439-513 · Zbl 0804.03017
[210] Dubois, D.; Prade, H., Possibility Theory: An Approach to Computerized Processing of Uncertainty, 1988, Plenum Press: Plenum Press New York · Zbl 0703.68004
[211] Dubois, D.; Prade, H., What are fuzzy rules and how to use them, Fuzzy Sets Syst., 84, 2, 169-185, 1996 · Zbl 0905.03008
[212] Dubois, D.; Prade, H., Fuzzy criteria and fuzzy rules in subjective evaluation - A general discussion, (Proc. 5th Eur. Cong. Intel. Techn. Soft Comput. (EUFIT’97), vol. 1. Proc. 5th Eur. Cong. Intel. Techn. Soft Comput. (EUFIT’97), vol. 1, Aachen, 1997), 975-979
[213] Dubois, D.; Prade, H., Possibility theory and formal concept analysis: characterizing independent sub-contexts, Fuzzy Sets Syst., 196, 4-16, 2012 · Zbl 1251.68231
[214] Dubois, D.; Prade, H., Practical methods for constructing possibility distributions, Int. J. Intell. Syst., 31, 3, 215-239, 2016
[215] Dubois, D.; Prade, H., From possibilistic rule-based systems to machine learning - A discussion paper, (Davis, J.; Tabia, K., Proc. 14th Int. Conf. on Scalable Uncertainty Management (SUM’20). Proc. 14th Int. Conf. on Scalable Uncertainty Management (SUM’20), Bozen-Bolzano, Sept. 23-25. Proc. 14th Int. Conf. on Scalable Uncertainty Management (SUM’20). Proc. 14th Int. Conf. on Scalable Uncertainty Management (SUM’20), Bozen-Bolzano, Sept. 23-25, LNCS, vol. 12322, 2020, Springer), 35-51 · Zbl 1517.68376
[216] Dubois, D.; Prade, H., A glance at causality, (Marquis, P.; Papini, O.; Prade, H., A Guided Tour of Artificial Intelligence Research. Vol. 1: Knowledge Representation, Reasoning and Learning, 2020, Springer), 275-305
[217] Dubois, D.; Prade, H., Reasoning and learning in the setting of possibility theory - Overview and perspectives, Int. J. Approx. Reason., 2023, this issue: 109028
[218] Dubois, D.; Prade, H.; Richard, G., Multiple-valued extensions of analogical proportions, Fuzzy Sets Syst., 292, 193-202, 2016 · Zbl 1380.03029
[219] Dubois, D.; Prade, H.; Rico, A., The logical encoding of Sugeno integrals, Fuzzy Sets Syst., 241, 61-75, 2014 · Zbl 1315.68237
[220] Dubois, D.; Prade, H.; Schockaert, S., Generalized possibilistic logic: foundations and applications to qualitative reasoning about uncertainty, Artif. Intell., 252, 139-174, 2017 · Zbl 1419.68110
[221] Dubois, D.; Prade, H.; Sudkamp, T., On the representation, measurement, and discovery of fuzzy associations, IEEE Trans. Fuzzy Syst., 13, 2, 250-262, 2005
[222] Dvijotham, K.; Garnelo, M.; Fawzi, A.; Kohli, P., Verification of deep probabilistic models, 2018, CoRR
[223] Dvijotham, K.; Stanforth, R.; Gowal, S.; Mann, T. A.; Kohli, P., A dual approach to scalable verification of deep networks, (Globerson, A.; Silva, R., Proc. of the 34th Conf. on Uncertainty in Artificial Intelligence (UAI’18). Proc. of the 34th Conf. on Uncertainty in Artificial Intelligence (UAI’18), Monterey, Aug. 6-10, 2018, AUAI Press), 550-559
[224] Dvijotham, K. D.; Stanforth, R.; Gowal, S.; Qin, C.; De, S.; Kohli, P., Efficient neural network verification with exactness characterization, (Globerson, A.; Silva, R., Proc 35th Conf. on Uncertainty in Artificial Intelligence (UAI’19). Proc 35th Conf. on Uncertainty in Artificial Intelligence (UAI’19), Tel Aviv, July 22-25, 2019, AUAI Press), 164
[225] Dwork, C.; Hardt, M.; Pitassi, T.; Reingold, O.; Zemel, R. S., Fairness through awareness, 2011, CoRR
[226] (Dzeroski, S.; Lavrac, N., Relational Data Mining, 2001, Springer) · Zbl 1003.68039
[227] Džeroski, S.; Ženko, B., Is combining classifiers with stacking better than selecting the best one?, Mach. Learn., 54, 3, 255-273, 2004 · Zbl 1101.68077
[228] Erk, K., Representing words as regions in vector space, (Proc. 13th Conf. on Computational Natural Language Learning, 2009), 57-65
[229] Espinosa Zarlenga, M.; Barbiero, P.; Ciravegna, G.; Marra, G.; Giannini, F.; Diligenti, M.; Shams, Z.; Precioso, F.; Melacci, S.; Weller, A., Concept embedding models: beyond the accuracy-explainability trade-off, Adv. Neural Inf. Process. Syst., 35, 21400-21413, 2022
[230] Evans, R.; Grefenstette, E., Learning explanatory rules from noisy data, J. Artif. Intell. Res., 61, 1-64, 2018 · Zbl 1426.68235
[231] R. Evans, E. Grefenstette, Learning explanatory rules from noisy data (extended abstract), in: Lang [390], pp. 5598-5602.
[232] Evans, R.; Saxton, D.; Amos, D.; Kohli, P.; Grefenstette, E., Can neural networks understand logical entailment?, (Proc. 6th Int. Conf. on Learning Representations (ICLR’18). Proc. 6th Int. Conf. on Learning Representations (ICLR’18), Vancouver, Apr. 30 - May 3, 2018)
[233] Eykholt, K.; Evtimov, I.; Fernandes, E.; Li, B.; Rahmati, A.; Xiao, C.; Prakash, A.; Kohno, T.; Song, D., Robust physical-world attacks on deep learning visual classification, (Proc. 2018 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’18). Proc. 2018 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’18), Salt Lake City, June 18-22, 2018, IEEE Computer Society), 1625-1634
[234] Fahandar, M. A.; Hüllermeier, E., Learning to rank based on analogical reasoning, (Proc. 32nd Nat Conf. on Artificial Intelligence (AAAI’18). Proc. 32nd Nat Conf. on Artificial Intelligence (AAAI’18), New Orleans, Feb. 2-7, 2018)
[235] Fahandar, M. A.; Hüllermeier, E.; Couso, I., Statistical inference for incomplete ranking data: the case of rank-dependent coarsening, (Int. Conf. on Machine Learning, 2017, PMLR), 1078-1087
[236] Fakhraei, S.; Raschid, L.; Getoor, L., Drug-Target Interaction Prediction for Drug Repurposing with Probabilistic Similarity Logic, 2013
[237] Fargier, H.; Mengel, S.; Mengin, J., An extended knowledge compilation map for conditional preference statements-based and generalized additive utilities-based languages, Ann. Math. Artif. Intell., 2024, in press
[238] Fargier, H.; Mengin, J., A knowledge compilation map for conditional preference statements-based languages, (Dignum, F.; Lomuscio, A.; Endriss, U.; Nowé, A., Proc. 20th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS ’21), 2021, ACM), 492-500
[239] Farnadi, G.; Bach, S. H.; Moens, M.; Getoor, L.; Cock, M. D., Extending PSL with fuzzy quantifiers, (Statistical Relational Artificial Intelligence, Papers from the 2014 AAAI Workshop. Statistical Relational Artificial Intelligence, Papers from the 2014 AAAI Workshop, Québec City, Québec, Canada, July 27, 2014. Statistical Relational Artificial Intelligence, Papers from the 2014 AAAI Workshop. Statistical Relational Artificial Intelligence, Papers from the 2014 AAAI Workshop, Québec City, Québec, Canada, July 27, 2014, AAAI Workshops, vol. WS-14-13, 2014), 35-37
[240] Farreny, H.; Prade, H., Default and inexact reasoning with possibility degrees, IEEE Trans. Syst. Man Cybern., 16, 2, 270-276, 1986 · Zbl 0591.68086
[241] Farreny, H.; Prade, H., Positive and negative explanations of uncertain reasoning in the framework of possibility theory, (Proc. 5th Conf. on Uncertainty in Artificial Intelligence (UAI’89). Proc. 5th Conf. on Uncertainty in Artificial Intelligence (UAI’89), Windsor, ON, Aug. 18-20, 1989). (Proc. 5th Conf. on Uncertainty in Artificial Intelligence (UAI’89). Proc. 5th Conf. on Uncertainty in Artificial Intelligence (UAI’89), Windsor, ON, Aug. 18-20, 1989), Rev. Intell. Artif., 4, 2, 43-75, 1990, Expanded version: Explications de raisonnements dans l’incertain
[242] Farreny, H.; Prade, H., Positive and Negative Explanations of Uncertain Reasoning in the Framework of Possibility Theory, (Zadeh, L. A.; Kacprzyk, J., Fuzzy Logic for the Management of Uncertainty, 1992, John Wiley & Sons, Inc.: John Wiley & Sons, Inc. USA), 319-333
[243] Fel, T.; Felipe, I.; Linsley, D.; Serre, T., Harmonizing the object recognition strategies of deep neural networks with humans, (Advances in Neural Information Processing Systems (NeurIPS), 2022)
[244] Feldman, M.; Friedler, S. A.; Moeller, J.; Scheidegger, C.; Venkatasubramanian, S., Certifying and removing disparate impact, (Proc. 21st ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD ’15, 2015, Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 259-268
[245] Ferré, S.; Ridoux, O., Introduction to logical information systems, Inf. Process. Manag., 40, 3, 383-419, 2004 · Zbl 1091.68119
[246] Ferré, S.; Kaytoue, M.; Huchard, M.; Kuznetsov, S. O.; Napoli, A., Formal concept analysis: from knowledge discovery to knowledge processing, (Marquis, P.; Papini, O.; Prade, H., A Guided Tour of Artificial Intelligence Research. Vol. 2 Artificial Intelligence Algorithms, 2020, Springer-Verlag), 411-445
[247] Fierens, D.; Blockeel, H.; Bruynooghe, M.; Ramon, J., Logical Bayesian networks and their relation to other probabilistic logical models, (Inductive Logic Programming, Proc. 15th Int. Conf. ILP’05. Inductive Logic Programming, Proc. 15th Int. Conf. ILP’05, Bonn, Germany, Aug. 10-13, 2005), 121-135 · Zbl 1134.68507
[248] Finlayson, S. G.; Bowers, J. D.; Ito, J.; Zittrain, J. L.; Beam, A. L.; Kohane, I. S., Adversarial attacks on medical machine learning, Science, 363, 6433, 1287-1289, 2019
[249] Fischer, M.; Balunovic, M.; Drachsler-Cohen, D.; Gehr, T.; Zhang, C.; Vechev, M. T., DL2: training and querying neural networks with logic, (Proc 36th Int. Conf. on Machine Learning (ICML’19). Proc 36th Int. Conf. on Machine Learning (ICML’19), Long Beach, June 9-15, 2019), 1931-1941
[250] Fishburn, P. C., Interdependence and additivity in multivariate, unidimensional expected utility theory, Int. Econ. Rev., 8, 3, 335-342, 1967 · Zbl 0153.49302
[251] Flint, A.; Blaschko, M. B., Perceptron learning of SAT, (Bartlett, P. L.; Pereira, F. C.N.; Burges, C. J.C.; Bottou, L.; Weinberger, K. Q., Advances in Neural Information Processing Systems 25: 26th Annual Conf. on Neural Information Processing Systems 2012, Proc. of a meeting held. Advances in Neural Information Processing Systems 25: 26th Annual Conf. on Neural Information Processing Systems 2012, Proc. of a meeting held, Dec. 3-6, 2012, Lake Tahoe, Nevada, 2012), 2780-2788
[252] França, M. V.M.; Zaverucha, G.; d’Avila Garcez, A. S., Fast relational learning using bottom clause propositionalization with artificial neural networks, Mach. Learn., 94, 1, 81-104, 2014
[253] Friedler, S. A.; Scheidegger, C.; Venkatasubramanian, S.; Choudhary, S.; Hamilton, E. P.; Roth, D., A comparative study of fairness-enhancing interventions in machine learning, (Proc. of the Conf. on Fairness, Accountability, and Transparency, FAT* ’19, 2019, Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 329-338
[254] (Fürnkranz, J.; Hüllermeier, E., Preference Learning, 2010, Springer) · Zbl 1201.68006
[255] Fürnkranz, J.; Hüllermeier, E.; Rudin, C.; Slowinski, R.; Sanner, S., Preference learning (Dagstuhl seminar 14101), Dagstuhl Rep., 4, 3, 1-27, 2014
[256] Leng, G. P.G.; McGinnity, Th. M., An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network, Fuzzy Sets Syst., 150, 211-243, 2005 · Zbl 1067.68128
[257] Gad-Elrab, M. H.; Stepanova, D.; Urbani, J.; Weikum, G., Exception-enriched rule learning from knowledge graphs, (Groth, P.; Simperl, E.; Gray, A. J.G.; Sabou, M.; Krötzsch, M.; Lécué, F.; Flöck, F.; Gil, Y., Proc. 15th Int. Semantic Web Conf. (ISWC’16), Part I. Proc. 15th Int. Semantic Web Conf. (ISWC’16), Part I, Kobe, Oct. 17-21. Proc. 15th Int. Semantic Web Conf. (ISWC’16), Part I. Proc. 15th Int. Semantic Web Conf. (ISWC’16), Part I, Kobe, Oct. 17-21, LNCS, vol. 9981, 2016), 234-251
[258] Galárraga, L. A.; Teflioudi, C.; Hose, K.; Suchanek, F. M., AMIE: association rule mining under incomplete evidence in ontological knowledge bases, (Schwabe, D.; Almeida, V. A.F.; Glaser, H.; Baeza-Yates, R.; Moon, S. B., Proc. 22nd Int. World Wide Web Conf., WWW ’13. Proc. 22nd Int. World Wide Web Conf., WWW ’13, Rio de Janeiro, May 13-17, 2013, Int. World Wide Web Conf. Steering Committee /ACM), 413-422
[259] Gammerman, A.; Vovk, V.; Vapnik, V., Learning by transduction, (Proc. 14th Conf. on Uncertainty in AI, 1998, Morgan Kaufmann), 148-155
[260] Ganter, B.; Kuznetsov, S. O., Pattern structures and their projections, (Delugach, H. S.; Stumme, G., Proc. 9th Int. Conf. on Conceptual Structures (ICCS’01). Proc. 9th Int. Conf. on Conceptual Structures (ICCS’01), LNCS, vol. 2120, 2001, Springer), 129-142 · Zbl 0994.68147
[261] Ganter, B.; Wille, R., Formal Concept Analysis: Mathematical Foundations, 1998, Springer-Verlag
[262] Gärdenfors, P., Nonmonotonic inference, expectations, and neural networks, (Kruse, R.; Siegel, P., Proc. Europ. Conf. on Symbolic and Quantitative Approaches to Uncertainty (ECSQAU). Proc. Europ. Conf. on Symbolic and Quantitative Approaches to Uncertainty (ECSQAU), Marseille, Oct. 15-17. Proc. Europ. Conf. on Symbolic and Quantitative Approaches to Uncertainty (ECSQAU). Proc. Europ. Conf. on Symbolic and Quantitative Approaches to Uncertainty (ECSQAU), Marseille, Oct. 15-17, LNCS, vol. 548, 1991, Springer), 12-27 · Zbl 0875.00072
[263] Gärdenfors, P., Conceptual Spaces: The Geometry of Thought, 2000, MIT Press
[264] Gehr, T.; Mirman, M.; Drachsler-Cohen, D.; Tsankov, P.; Chaudhuri, S.; Vechev, M. T., AI2: safety and robustness certification of neural networks with abstract interpretation, (Proc. 2018 IEEE Symp. on Security and Privacy (SP’18). Proc. 2018 IEEE Symp. on Security and Privacy (SP’18), May 21-23, San Francisco, 2018, IEEE Computer Society), 3-18
[265] (Getoor, L.; Taskar, B., Introduction to Statistical Relational Learning. Introduction to Statistical Relational Learning, Adaptive Computation and Machine Learning, 2007, MIT Press) · Zbl 1141.68054
[266] Ghosh, B.; Meel, K. S., IMLI: an incremental framework for maxsat-based learning of interpretable classification rules, (Conitzer, V.; Hadfield, G. K.; Vallor, S., Proc. of the 2019 AAAI/ACM Conf. on AI, Ethics, and Society (AIES’19). Proc. of the 2019 AAAI/ACM Conf. on AI, Ethics, and Society (AIES’19), Honolulu, Jan. 27-28, 2019, ACM), 203-210
[267] Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E., Neural message passing for quantum chemistry, (Precup, D.; Teh, Y. W., Proc. of the 34th Int. Conf. on Machine Learning (ICML’17). Proc. of the 34th Int. Conf. on Machine Learning (ICML’17), Sydney, Aug. 6-11. Proc. of the 34th Int. Conf. on Machine Learning (ICML’17). Proc. of the 34th Int. Conf. on Machine Learning (ICML’17), Sydney, Aug. 6-11, Proceedings of Machine Learning Research, vol. 70, 2017, PMLR), 1263-1272
[268] Gilpin, L. H.; Bau, D.; Yuan, B. Z.; Bajwa, A.; Specter, M.; Kagal, L., Explaining explanations: an overview of interpretability of machine learning, (Bonchi, F.; Provost, F. J.; Eliassi-Rad, T.; Wang, W.; Cattuto, C.; Ghani, R., Proc. 5th IEEE Int. Conf. on Data Science and Advanced Analytics (DSAA’18). Proc. 5th IEEE Int. Conf. on Data Science and Advanced Analytics (DSAA’18), Turin, Oct. 1-3, 2018, IEEE), 80-89
[269] Gilpin, L. H.; Testart, C.; Fruchter, N.; Adebayo, J., Explaining explanations to society, 2019, CoRR
[270] Giunchiglia, E.; Tatomir, A.; Stoian, M. C.; Lukasiewicz, T., CCN+: a neuro-symbolic framework for deep learning with requirements, Int. J. Approx. Reason., 2024, this issue: 109124 · Zbl 07885915
[271] Goldstein, A.; Kapelner, A.; Bleich, J.; Pitkin, E., Peeking inside the black box: visualizing statistical learning with plots of individual conditional expectation, J. Comput. Graph. Stat., 24, 44-65, 2013
[272] Goodfellow, I. J.; Mirza, M.; Da, X.; Courville, A. C.; Bengio, Y., An empirical investigation of catastrophic forgetting in gradient-based neural networks, (Conf. Track Proc. 2nd Int. Conf. on Learning Representations (ICLR’14). Conf. Track Proc. 2nd Int. Conf. on Learning Representations (ICLR’14), Banff, April 14-16, 2014)
[273] Goodfellow, I. J.; Shlens, J.; Szegedy, C., Explaining and Harnessing Adversarial Examples, 2014
[274] D. Gopinath, G. Katz, C.S. Pasareanu, C.W. Barrett, Deepsafe: a data-driven approach for assessing robustness of neural networks, in: Lahiri and Wang [387], pp. 3-19.
[275] Goyal, Y.; Wu, Z.; Ernst, J.; Batra, D.; Parikh, D.; Lee, S., Counterfactual visual explanations, (Proc. 36th Int. Conf. on Machine Learning (ICML), 2019)
[276] Grabisch, M.; Labreuche, C., A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid, Ann. Oper. Res., 175, 247-286, 2010 · Zbl 1185.90118
[277] Grandvalet, Y.; Rakotomamonjy, A.; Keshet, J.; Canu, S., Support vector machines with a reject option, (Advances in Neural Information Processing Systems, 2009), 537-544
[278] Greco, S.; Inuiguchi, M.; Slowinski, R., Fuzzy rough sets and multiple-premise gradual decision rules, Int. J. Approx. Reason., 41, 2, 179-211, 2006 · Zbl 1093.68114
[279] Greco, S.; Matarazzo, B.; Slowinski, R., Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules, Eur. J. Oper. Res., 158, 2, 271-292, 2004 · Zbl 1067.90071
[280] Grozea, C.; Popescu, M., Can machine learning learn a decision oracle for NP problems? A test on SAT, Fundam. Inform., 131, 3-4, 441-450, 2014
[281] Grzymala-Busse, J. W., LERS - a data mining system, (Maimon, O.; Rokach, L., The Data Mining and Knowledge Discovery Handbook, 2005, Springer), 1347-1351 · Zbl 1087.68029
[282] Grzymala-Busse, J. W., Rough set theory with applications to data mining, (Negoita, M.; Reusch, B., Real World Applications of Computational Intelligence, 2005, Springer), 221-244
[283] Grzymala-Busse, J. W.; Yao, Y., Probabilistic rule induction with the LERS data mining system, Int. J. Intell. Syst., 26, 6, 518-539, 2011
[284] Grzymala-Busse, J. W.; Ziarko, W., Data mining and rough set theory, Commun. ACM, 43, 4, 108-109, 2000
[285] Gu, J.; Zhao, H.; Lin, Z.; Li, S.; Cai, J.; Ling, M., Scene graph generation with external knowledge and image reconstruction, (IEEE Conf. on Computer Vision and Pattern Recognition, CVPR 2019. IEEE Conf. on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, 2019, Computer Vision Foundation/IEEE), 1969-1978
[286] Guidotti, R., Counterfactual explanations and how to find them: literature review and benchmarking, Data Min. Knowl. Discov., 2022
[287] Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D., A survey of methods for explaining black box models, ACM Comput. Surv., 51, 5, 1-42, 2018
[288] Guigues, J. L.; Duquenne, V., Familles minimales d’implications informatives résultant d’un tableau de données binaires, Math. Sci. Hum., 95, 5-18, 1986 · Zbl 1504.68217
[289] Guillaume, R.; Dubois, D., A maximum likelihood approach to inference under coarse data based on minimax regret, (Destercke, S.; Denœux, T.; Gil, M. A.; Grzegorzewski, P.; Hryniewicz, O., Uncertainty Modelling in Data Science, SMPS 2018. Uncertainty Modelling in Data Science, SMPS 2018, Advances in Intelligent Systems and Computing, vol. 832, 2018, Springer), 99-106
[290] Gunning, D.; Vorm, E.; Wang, J. Y.; Turek, M., DARPA’s explainable AI (XAI) program: a retrospective, Appl. AI Lett., 2, 4, 2021
[291] Gupta, A.; Boleda, G.; Padó, S., Instantiation, 2018, CoRR
[292] Gutiérrez-Basulto, V.; Schockaert, S., From knowledge graph embedding to ontology embedding? An analysis of the compatibility between vector space representations and rules, (Proc. of the 16th Int. Conf. on Principles of Knowledge Representation and Reasoning, 2018), 379-388
[293] (Guyon, I.; von Luxburg, U.; Bengio, S.; Wallach, H. M.; Fergus, R.; Vishwanathan, S. V.N.; Garnett, R., Advances in Neural Information Processing Systems 30: Annual Conf. on Neural Information Processing Systems 2017. Advances in Neural Information Processing Systems 30: Annual Conf. on Neural Information Processing Systems 2017, Dec. 4-9, Long Beach, 2017, Springer)
[294] Ha, T. M., The optimum class-selective rejection rule, IEEE Trans. Pattern Anal. Mach. Intell., 19, 6, 608-615, 1997
[295] Haim, S.; Walsh, T., Restart strategy selection using machine learning techniques, (Kullmann, O., Proc. 12th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT’09). Proc. 12th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT’09), Swansea, June 30 - July 3. Proc. 12th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT’09). Proc. 12th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT’09), Swansea, June 30 - July 3, LNCS, vol. 5584, 2009, Springer), 312-325
[296] Hájek, P.; Havránek, P., Mechanising Hypothesis Formation - Mathematical Foundations for a General Theory, 1978, Springer Verlag · Zbl 0371.02002
[297] Halpern, J. Y., Reasoning About Uncertainty, 2017, MIT Press, First edition published in 2005 · Zbl 1368.68001
[298] Halpern, J. Y.; Fagin, R.; Moses, Y.; Vardi, M. Y., Reasoning About Knowledge, 1995 & 2003, MIT Press · Zbl 0839.68095
[299] Halpern, J. Y.; Pearl, J., Causes and explanations: a structural-model approach. Part II: explanations, Br. J. Philos. Sci., 56, 4, 889-911, 2005 · Zbl 1096.03005
[300] Hasling, D. W.; Clancey, W. J.; Rennels, G., Strategic explanations for a diagnostic consultation system, Int. J. Man-Mach. Stud., 20, 1, 3-19, 1984
[301] He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.-S., Neural collaborative filtering, (Proc. 26th Int. Conf. on World Wide Web, 2017), 173-182
[302] Heaven, D., Why deep-learning AIs are so easy to fool, Nature, 574, 7777, 163, 2019
[303] Heid, S.; Hanselle, J.; Fürnkranz, J.; Hüllermeier, E., Learning decision catalogues for situated decision making: the case of scoring systems, Int. J. Approx. Reason., 2024, this issue: 2024 · Zbl 07885924
[304] Heitjan, D. F.; Rubin, D. B., Ignorability and coarse data, Ann. Stat., 19, 4, 2244-2253, 1991 · Zbl 0745.62004
[305] Heo, J.; Joo, S.; Moon, T., Fooling Neural Network Interpretations via Adversarial Model Manipulation, Advances in Neural Information Processing Systems, vol. 32, 2019
[306] Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.; Botvinick, M.; Mohamed, S.; Lerchner, A., β-VAE: learning basic visual concepts with a constrained variational framework, (Int. Conf. on Learning Representations, vol. 3, 2017)
[307] Hill, F.; Cho, K.; Korhonen, A.; Bengio, Y., Learning to understand phrases by embedding the dictionary, Trans. Assoc. Comput. Linguist., 4, 17-30, 2016
[308] P. Hitzler, R. Rayan, J. Zalewski, S.S. Norouzi, A. Eberhart, E.Y. Vasserman, Deep deductive reasoning is a hard deep learning problem, Neurosymbolic Artificial Intelligence, under review.
[309] (Hitzler, P.; Sarker, M. K., Neuro-Symbolic Artificial Intelligence: The State of the Art. Neuro-Symbolic Artificial Intelligence: The State of the Art, Frontiers in Artificial Intelligence and Applications, vol. 342, 2021, IOS Press)
[310] Hmidy, Y.; Rico, A.; Strauss, O., Macsum aggregation learning, Fuzzy Sets Syst., 459, 182-200, 2023 · Zbl 1543.68368
[311] Hoffman, R. R.; Klein, G., Explaining explanation, part 1: theoretical foundations, IEEE Intell. Syst., 32, 3, 68-73, 2017
[312] Hoffman, R. R.; Miller, T.; Mueller, S. T.; Klein, G.; Clancey, W. J., Explaining explanation, part 4: a deep dive on deep nets, IEEE Intell. Syst., 33, 3, 87-95, 2018
[313] Hoffman, R. R.; Mueller, S. T.; Klein, G., Explaining explanation, part 2: empirical foundations, IEEE Intell. Syst., 32, 4, 78-86, 2017
[314] Hoffman, R. R.; Mueller, S. T.; Klein, G.; Litman, J., Metrics for explainable AI: challenges and prospects, 2018, CoRR
[315] Hohenecker, P.; Lukasiewicz, T., Deep learning for ontology reasoning, 2017, CoRR
[316] Hölldobler, S.; Kalinke, Y.; Störr, H., Approximating the semantics of logic programs by recurrent neural networks, Appl. Intell., 11, 1, 45-58, 1999
[317] (Hooker, J. N., Proc. 24th Int. Conf. on Principles and Practice of Constraint Programming (CP’18). Proc. 24th Int. Conf. on Principles and Practice of Constraint Programming (CP’18), Lille, Aug. 27-31. Proc. 24th Int. Conf. on Principles and Practice of Constraint Programming (CP’18). Proc. 24th Int. Conf. on Principles and Practice of Constraint Programming (CP’18), Lille, Aug. 27-31, LNCS, vol. 11008, 2018, Springer)
[318] Hornik, K., Approximation capabilities of multilayer feedforward networks, Neural Netw., 4, 2, 251-257, 1991
[319] Hoyer, P. O., Non-negative matrix factorization with sparseness constraints, J. Mach. Learn. Res., 5, 1457-1469, 2004 · Zbl 1222.68218
[320] Hu, X.; Rudin, C.; Seltzer, M. I., Optimal sparse decision trees, (Proc. Annual Conf. on Neural Information Processing Systems (NeurIPS’19). Proc. Annual Conf. on Neural Information Processing Systems (NeurIPS’19), Vancouver, Dec. 8-14, 2019), 7265-7273
[321] Hu, Y.; Chapman, A.; Wen, G.; Hall, W., What can knowledge bring to machine learning? - A survey of low-shot learning for structured data, ACM Trans. Intell. Syst. Technol., 13, 3, Article 18 pp., 2022
[322] Hu, Z.; Ma, X.; Liu, Z.; Hovy, E. H.; Xing, E. P., Harnessing deep neural networks with logic rules, (Proc. 54th Annual Meeting of the Association for Computational Linguistics, 2016)
[323] Huang, D., On learning to prove, 2019, CoRR
[324] Huang, D.; Dhariwal, P.; Song, D.; Gamepad, I. Sutskever, A learning environment for theorem proving, (Proc. 7th Int. Conf. on Learning Representations (ICLR’19). Proc. 7th Int. Conf. on Learning Representations (ICLR’19), New Orleans, May 6-9, 2019, OpenReview.net)
[325] X. Huang, M. Kwiatkowska, S. Wang, M. Wu, Safety verification of deep neural networks, in: Majumdar and Kuncak [427], pp. 3-29.
[326] Huang, X.; Marques-Silva, J., From robustness to explainability and back again, 2023, CoRR
[327] Huang, X.; Marques-Silva, J., On the failings of Shapley values for explainability, Int. J. Approx. Reason., 2024, this issue: 109112 · Zbl 07885914
[328] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, Binarized neural networks, in: Lee et al. [397], pp. 4107-4115.
[329] Hüllermeier, E., Learning from imprecise and fuzzy observations: data disambiguation through generalized loss minimization, Int. J. Approx. Reason., 55, 7, 1519-1534, 2014 · Zbl 1407.68396
[330] Hüllermeier, E.; Cheng, W., Superset learning based on generalized loss minimization, (Machine Learning and Knowledge Discovery in Databases - Proc. Eur. Conf., ECML PKDD 2015, Part II. Machine Learning and Knowledge Discovery in Databases - Proc. Eur. Conf., ECML PKDD 2015, Part II, LNCS, vol. 9285, 2015, Springer), 260-275
[331] Hüllermeier, E.; Destercke, S.; Couso, I., Learning from imprecise data: adjustments of optimistic and pessimistic variants, (Proc. 13th Int. Conf. on Scalable Uncertainty Management (SUM’19). Proc. 13th Int. Conf. on Scalable Uncertainty Management (SUM’19), Compiègne, Dec. 16-18, 2019), 266-279
[332] Hüllermeier, E.; Dubois, D.; Prade, H., Model adaptation in possibilistic instance-based reasoning, IEEE Trans. Fuzzy Syst., 10, 3, 333-339, 2002
[333] Hüllermeier, E.; Waegeman, W., Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods, Mach. Learn., 110, 3, 457-506, 2021 · Zbl 07432810
[334] Hutter, F.; Hoos, H. H.; Leyton-Brown, K., Sequential model-based optimization for general algorithm configuration, (Coello, C. A.C., Proc. 5th Int. Conf. on Learning and Intelligent Optimization, Selected Papers. Proc. 5th Int. Conf. on Learning and Intelligent Optimization, Selected Papers, LION 5, Rome, January 17-21. Proc. 5th Int. Conf. on Learning and Intelligent Optimization, Selected Papers. Proc. 5th Int. Conf. on Learning and Intelligent Optimization, Selected Papers, LION 5, Rome, January 17-21, LNCS, vol. 6683, 2011, Springer), 507-523
[335] Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; Stützle, T., ParamILS: an automatic algorithm configuration framework, J. Artif. Intell. Res., 36, 267-306, 2009 · Zbl 1192.68831
[336] Hutter, F.; Xu, L.; Hoos, H. H.; Leyton-Brown, K., Algorithm runtime prediction: methods & evaluation, Artif. Intell., 206, 79-111, 2014 · Zbl 1334.68185
[337] Hyafil, L.; Rivest, R. L., Constructing optimal binary decision trees is np-complete, Inf. Process. Lett., 5, 1, 15-17, 1976 · Zbl 0333.68029
[338] ICLR, Proc. 5th Int. Conf. on Learning Representations (ICLR’17), Toulon, Apr. 24-26, OpenReview.net, 2017.
[339] Ignatiev, A.; Narodytska, N.; Asher, N.; Marques-Silva, J., From contrastive to abductive explanations and back again, (Baldoni, M.; Bandini, S., AIxIA 2020 - Advances in Artificial Intelligence - XIXth Int. Conf. of the Italian Association for Artificial Intelligence, Virtual Event, Revised Selected Papers. AIxIA 2020 - Advances in Artificial Intelligence - XIXth Int. Conf. of the Italian Association for Artificial Intelligence, Virtual Event, Revised Selected Papers, November 25-27, 2020. AIxIA 2020 - Advances in Artificial Intelligence - XIXth Int. Conf. of the Italian Association for Artificial Intelligence, Virtual Event, Revised Selected Papers. AIxIA 2020 - Advances in Artificial Intelligence - XIXth Int. Conf. of the Italian Association for Artificial Intelligence, Virtual Event, Revised Selected Papers, November 25-27, 2020, LNCS, vol. 12414, 2020, Springer), 335-355
[340] A. Ignatiev, N. Narodytska, J. Marques-Silva, Abduction-based explanations for machine learning models, in: Proc. 33rd AAAI Conf. on Artificial Intelligence (AAAI’19), Honolulu, Jan. 27 - Feb. 1 [2019], pp. 1511-1519.
[341] Ignatiev, A.; Narodytska, N.; Marques-Silva, J., On validating, repairing and refining heuristic ML explanations, 2019, CoRR
[342] Ignatiev, A.; Pereira, F.; Narodytska, N.; Marques-Silva, J., A SAT-based approach to learn explainable decision sets, (Galmiche, D.; Schulz, S.; Sebastiani, R., Proc. 9th Int. Joint Conf. Automated Reasoning (IJCAR’18), Held as Part of the Federated Logic Conference, FloC 2018. Proc. 9th Int. Joint Conf. Automated Reasoning (IJCAR’18), Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17. Proc. 9th Int. Joint Conf. Automated Reasoning (IJCAR’18), Held as Part of the Federated Logic Conference, FloC 2018. Proc. 9th Int. Joint Conf. Automated Reasoning (IJCAR’18), Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, LNCS, vol. 10900, 2018, Springer), 627-645 · Zbl 1511.68249
[343] G. Irving, C. Szegedy, A.A. Alemi, N. Eén, F. Chollet, J. Urban, DeepMath - deep sequence models for premise selection, in: Lee et al. [397], pp. 2235-2243.
[344] Izza, Y.; Ignatiev, A.; Marques-Silva, J., On explaining decision trees, 2020, CoRR
[345] Izza, Y.; Ignatiev, A.; Marques-Silva, J., On tackling explanation redundancy in decision trees, J. Artif. Intell. Res., 75, 261-321, 2022 · Zbl 07603113
[346] Jabbour, S.; Sais, L.; Salhi, Y., Mining top-k motifs with a sat-based framework, Artif. Intell., 244, 30-47, 2017 · Zbl 1404.68143
[347] Jaeger, M., Ignorability in statistical and probabilistic inference, J. Artif. Intell. Res., 24, 889-917, 2005 · Zbl 1123.62004
[348] Jameel, S.; Schockaert, S., Entity embeddings with conceptual subspaces as a basis for plausible reasoning, (Proc. 22nd Europ. Conf. on Artificial Intelligence (ECAI’16). Proc. 22nd Europ. Conf. on Artificial Intelligence (ECAI’16), 29 Aug. - 2 Sept. 2016, The Hague, 2016), 1353-1361
[349] Jameel, S.; Schockaert, S., Modeling context words as regions: an ordinal regression approach to word embedding, (Proc. 21st Conf. on Computational Natural Language Learning, 2017), 123-133
[350] Jang, J.; Sun, C., Functional equivalence between radial basis function networks and fuzzy inference systems, IEEE Trans. Neural Netw., 4, 1, 156-159, 1993
[351] Janota, M., Towards generalization in QBF solving via machine learning, (Proc. 32nd AAAI Conf. on Artificial Intelligence, (AAAI-18). Proc. 32nd AAAI Conf. on Artificial Intelligence, (AAAI-18), New Orleans, Feb. 2-7, 2018), 6607-6614
[352] (Janota, M.; Lynce, I., Proc. 22nd Int. Conf. on Theory and Applications of Satisfiability Testing - SAT’19. Proc. 22nd Int. Conf. on Theory and Applications of Satisfiability Testing - SAT’19, Lisbon, July 9-12. Proc. 22nd Int. Conf. on Theory and Applications of Satisfiability Testing - SAT’19. Proc. 22nd Int. Conf. on Theory and Applications of Satisfiability Testing - SAT’19, Lisbon, July 9-12, LNCS, vol. 11628, 2019, Springer)
[353] Jeffrey, R., The Logic of Decision, 1983, Chicago University Press
[354] Jung, P.; Marra, G.; Kuželka, O., Quantified neural Markov logic networks, Int. J. Approx. Reason., 2024, this issue: 109172 · Zbl 07885920
[355] Junker, U.; Delgrande, J.; Doyle, J.; Rossi, F.; Schaub, T., Preface to the special issue of computational intelligence on preferences, Comput. Intell., 20, 2, 109-110, 2004
[356] Kahneman, D., Thinking, Fast and Slow, 2011, Macmillan
[357] C. Kaliszyk, F. Chollet, C. Szegedy, Holstep: a machine learning dataset for higher-order logic theorem proving, in: Proc. 5th Int. Conf. on Learning Representations (ICLR’17), Toulon, Apr. 24-26 [338].
[358] Kaliszyk, C.; Urban, J., Learning-assisted automated reasoning with Flyspeck, J. Autom. Reason., 53, 2, 173-213, 2014 · Zbl 1314.68283
[359] Kaliszyk, C.; Urban, J., Learning-assisted theorem proving with millions of lemmas, J. Symb. Comput., 69, 109-128, 2015 · Zbl 1315.68220
[360] C. Kaliszyk, J. Urban, H. Michalewski, M. Olsák, Reinforcement learning of theorem proving, in: Bengio et al. [59], pp. 8836-8847.
[361] Kaliszyk, C.; Urban, J.; Vyskocil, J., Machine learner for automated reasoning 0.4 and 0.5, (Schulz, S.; de Moura, L.; Konev, B., 4th Workshop on Practical Aspects of Automated Reasoning, PAAR@IJCAR 2014. 4th Workshop on Practical Aspects of Automated Reasoning, PAAR@IJCAR 2014, Vienna, 2014. 4th Workshop on Practical Aspects of Automated Reasoning, PAAR@IJCAR 2014. 4th Workshop on Practical Aspects of Automated Reasoning, PAAR@IJCAR 2014, Vienna, 2014, EPiC Series in Computing, vol. 31, 2014, EasyChair), 60-66
[362] Kanjanatarakul, O.; Sriboonchitta, S.; Denœux, T., Statistical estimation and prediction using belief functions: principles and application to some econometric models, Int. J. Approx. Reason., 72, 71-94, 2016 · Zbl 1352.68247
[363] Karimi, A.-H.; Barthe, G.; Schölkopf, B.; Valera, I., A survey of algorithmic recourse: contrastive explanations and consequential recommendations, ACM Comput. Surv., 55, 5, 1-29, 2023
[364] Karimi, A.-H.; Schölkopf, B.; Valera, I., Algorithmic recourse: from counterfactual explanations to interventions, (Proc. of the 2021 ACM Conf. on Fairness, Accountability, and Transparency, FAccT’21, 2021), 353-362
[365] Karpathy, A.; Fei-Fei, L., Deep visual-semantic alignments for generating image descriptions, (Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2015), 3128-3137
[366] Kassel, G., The use of deep knowledge to improve explanation capabilities of rule-based expert systems, (Balzert, H.; Heyer, G.; Lutze, R., Expertensysteme ’87: Konzepte und Werkzeuge, Tagung I/1987 des German Chapter of the ACM am 7. und 8.4.1987 in Nürnberg. Expertensysteme ’87: Konzepte und Werkzeuge, Tagung I/1987 des German Chapter of the ACM am 7. und 8.4.1987 in Nürnberg, Berichte des German Chapter of the ACM, vol. 28, 1987), 315-326
[367] G. Katz, C.W. Barrett, D.L. Dill, K. Julian, M.J. Kochenderfer, Reluplex: an efficient SMT solver for verifying deep neural networks, in: Majumdar and Kuncak [427], pp. 97-117. · Zbl 1494.68167
[368] Katz, G.; Huang, D. A.; Ibeling, D.; Julian, K.; Lazarus, C.; Lim, R.; Shah, P.; Thakoor, S.; Wu, H.; Zeljic, A.; Dill, D. L.; Kochenderfer, M. J.; Barrett, C. W., The Marabou framework for verification and analysis of deep neural networks, (Dillig, I.; Tasiran, S., Proc. 31st Int. Conf. on Computer Aided Verification (CAV’19). Proc. 31st Int. Conf. on Computer Aided Verification (CAV’19), New York City, July 15-18. Proc. 31st Int. Conf. on Computer Aided Verification (CAV’19). Proc. 31st Int. Conf. on Computer Aided Verification (CAV’19), New York City, July 15-18, LNCS, vol. 11561, 2019, Springer), 443-452
[369] Kazemi, S. M.; Poole, D., Simple embedding for link prediction in knowledge graphs, (Advances in Neural Information Processing Systems 31: Annual Conf. on Neural Information Processing Systems 2018, NeurIPS 2018. Advances in Neural Information Processing Systems 31: Annual Conf. on Neural Information Processing Systems 2018, NeurIPS 2018, Montréal, Dec. 3-8, 2018), 4289-4300
[370] Keane, M. T.; Kenny, E. M.; Delaney, E.; Smyth, B., If only we had better counterfactual explanations: five key deficits to rectify in the evaluation of counterfactual XAI techniques, (Proc. of the 30th Int. Conf. on Artificial Intelligence (IJCAI’21), 2021), 4466-4474
[371] Kemmar, A.; Lebbah, Y.; Loudni, S.; Boizumault, P.; Charnois, T., Prefix-projection global constraint and top-k approach for sequential pattern mining, Constraints, 22, 2, 265-306, 2017 · Zbl 1427.68066
[372] E.B. Khalil, H. Dai, Y. Zhang, B. Dilkina, L. Song, Learning combinatorial optimization algorithms over graphs, in: Guyon et al. [293], pp. 6348-6358.
[373] Khiari, M.; Boizumault, P.; Crémilleux, B., Constraint programming for mining n-ary patterns, (Proc. CP 16th Int. Conf. on Principles and Practice of Constraint Programming (CP’10). Proc. CP 16th Int. Conf. on Principles and Practice of Constraint Programming (CP’10), St. Andrews, Scotland, Sept. 6-10, 2010), 552-567
[374] KhudaBukhsh, A. R.; Xu, L.; Hoos, H. H.; Leyton-Brown, K., SATenstein: automatically building local search SAT solvers from components, Artif. Intell., 232, 20-42, 2016 · Zbl 1351.68255
[375] Klein, G., Explaining explanation, part 3: the causal landscape, IEEE Intell. Syst., 33, 2, 83-88, 2018
[376] Koh, P. W.; Nguyen, T.; Tang, Y. S.; Mussmann, S.; Pierson, E.; Kim, B.; Liang, P., Concept bottleneck models, (Int. Conf. on Machine Learning, 2020, PMLR), 5338-5348
[377] Kraus, S.; Lehmann, D.; Magidor, M., Nonmonotonic reasoning, preferential models and cumulative logics, Artif. Intell., 44, 167-207, 1990 · Zbl 0782.03012
[378] Kreiss, D.; Schollmeyer, G.; Augustin, T., Towards improving electoral forecasting by including undecided voters and interval-valued prior knowledge, (Int. Symp. on Imprecise Probability: Theories and Applications (ISIPTA), 2021, PMLR), 201-209
[379] (Krishnapuram, B.; Shah, M.; Smola, A. J.; Aggarwal, C. C.; Shen, D.; Rastogi, R., Proc. of the 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining. Proc. of the 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, San Francisco, Aug. 13-17, 2016, ACM), 13-17
[380] Kuo, C.; Ravi, S. S.; Dao, T.; Vrain, C.; Davidson, I., A framework for minimal clustering modification via constraint programming, (Proc. 31st AAAI Conf. on Artificial Intelligence. Proc. 31st AAAI Conf. on Artificial Intelligence, San Francisco, Feb. 4-9, 2017, 2017), 1389-1395
[381] Kuzelka, O.; Davis, J.; Schockaert, S., Encoding Markov logic networks in possibilistic logic, (Meila, M.; Heskes, T., Proc. 31st Conf. on Uncertainty in Artificial Intelligence (UAI’15). Proc. 31st Conf. on Uncertainty in Artificial Intelligence (UAI’15), Amsterdam, July 12-16, 2015, AUAI Press), 454-463
[382] Kuzelka, O.; Davis, J.; Schockaert, S., Learning possibilistic logic theories from default rules, (Kambhampati, S., Proc. 25th Int. Joint Conf. on Artificial Intelligence (IJCAI’16). Proc. 25th Int. Joint Conf. on Artificial Intelligence (IJCAI’16), New York, July 9-15, 2016, IJCAI/AAAI Press), 1167-1173
[383] Kuzelka, O.; Davis, J.; Schockaert, S., Induction of interpretable possibilistic logic theories from relational data, (Sierra, C., Proc. 26th Int. Joint Conf. on Artificial Intelligence (IJCAI’17). Proc. 26th Int. Joint Conf. on Artificial Intelligence (IJCAI’17), Melbourne, Aug. 19-25, 2017, ijcai.org), 1153-1159
[384] Kwiatkowska, M. Z., Safety verification for deep neural networks with provable guarantees (invited paper), (Fokkink, W.; van Glabbeek, R., Proc. 30th Int. Conf. on Concurrency Theory (CONCUR’19). Proc. 30th Int. Conf. on Concurrency Theory (CONCUR’19), Aug. 27-30, Amsterdam. Proc. 30th Int. Conf. on Concurrency Theory (CONCUR’19). Proc. 30th Int. Conf. on Concurrency Theory (CONCUR’19), Aug. 27-30, Amsterdam, LIPIcs, vol. 140, 2019, Schloss Dagstuhl - Leibniz-Zentrum für Informatik), Article 1 pp.
[385] Labreuche, C., A general framework for explaining the results of a multi-attribute preference model, Artif. Intell., 175, 7-8, 1410-1448, 2011 · Zbl 1231.91084
[386] Lachiche, N.; Flach, P. A., 1BC2: a true first-order Bayesian classifier, (12th Int. Conf. on Inductive Logic Programming (ILP’02), Revised Papers. 12th Int. Conf. on Inductive Logic Programming (ILP’02), Revised Papers, Sydney, July 9-11, 2002), 133-148 · Zbl 1017.68522
[387] (Lahiri, S. K.; Wang, C., Proc. 16th Int. Symp. on Automated Technology for Verification and Analysis (ATVA’18). Proc. 16th Int. Symp. on Automated Technology for Verification and Analysis (ATVA’18), Los Angeles, Oct. 7-10. Proc. 16th Int. Symp. on Automated Technology for Verification and Analysis (ATVA’18). Proc. 16th Int. Symp. on Automated Technology for Verification and Analysis (ATVA’18), Los Angeles, Oct. 7-10, LNCS, vol. 11138, 2018, Springer)
[388] H. Lakkaraju, S.H. Bach, J. Leskovec, Interpretable decision sets: A joint framework for description and prediction, in: Krishnapuram et al. [379], pp. 1675-1684.
[389] Lallouet, A.; Lopez, M.; Martin, L.; Vrain, C., On learning constraint problems, (Proc. 22nd IEEE Int. Conf. on Tools with Artificial Intelligence (ICTAI’10), vol. 1. Proc. 22nd IEEE Int. Conf. on Tools with Artificial Intelligence (ICTAI’10), vol. 1, Arras, Oct. 27-29, 2010, IEEE Computer Society), 45-52
[390] (Lang, J., Proc. of the 27th Int. Joint Conf. on Artificial Intelligence (IJCAI’18). Proc. of the 27th Int. Joint Conf. on Artificial Intelligence (IJCAI’18), Stockholm, July 13-19, 2018, ijcai.org)
[391] Lavrac, N.; Dzeroski, S.; Grobelnik, M., Learning nonrecursive definitions of relations with LINUS, (Machine Learning - EWSL-91, European Working Session on Learning, Proc.. Machine Learning - EWSL-91, European Working Session on Learning, Proc., Porto, March 6-8, 1991), 265-281
[392] Law, M.; Thome, N.; Cord, M., Learning a distance metric from relative comparisons between quadruplets of images, Int. J. Comput. Vis., 121, 1, 65-94, 2017 · Zbl 1435.68268
[393] Le Cun, Y., Quand la Machine Apprend. La Révolution des Neurones Artificiels et de l’Apprentissage Profond, 2019, Odile Jacob
[394] Lécué, F.; Chen, J.; Pan, J. Z.; Chen, H., Augmenting transfer learning with semantic reasoning, (Kraus, S., Proc. 28th Int. Joint Conf. on Artificial Intelligence (IJCAI’19). Proc. 28th Int. Joint Conf. on Artificial Intelligence (IJCAI’19), Macao, Aug. 10-16, 2019, ijcai.org), 1779-1785
[395] Lederman, G.; Rabe, M. N.; Seshia, S. A., Learning heuristics for automated reasoning through deep reinforcement learning, 2018, CoRR
[396] Lee, D. D.; Seung, H. S., Learning the parts of objects by non-negative matrix factorization, Nature, 401, 6755, 788-791, 1999 · Zbl 1369.68285
[397] (Lee, D. D.; Sugiyama, M.; von Luxburg, U.; Guyon, I.; Garnett, R., Advances in Neural Information Processing Systems 29: Annual Conf. on Neural Information Processing Systems 2016. Advances in Neural Information Processing Systems 29: Annual Conf. on Neural Information Processing Systems 2016, Barcelona, Dec. 5-10, 2016)
[398] Leofante, F.; Narodytska, N.; Pulina, L.; Tacchella, A., Automated verification of neural networks: advances, challenges and perspectives, 2018, CoRR
[399] Levesque, H., A fundamental tradeoff in knowledge representation and reasoning (revised version), (Brachman, R.; Levesque, H., Readings in Knowledge Representation, 1985, Morgan: Morgan Kaufman), 41-70 · Zbl 0609.68007
[400] Levesque, H. J., Knowledge representation and reasoning, Annu. Rev. Comput. Sci., 1, 1, 255-288, 1986
[401] Levesque, H. J.; Brachman, R. J., Expressiveness and tractability in knowledge representation and reasoning, Comput. Intell., 3, 78-93, 1987
[402] Li, O.; Liu, H.; Chen, C.; Rudin, C., Deep learning for case-based reasoning through prototypes: a neural network that explains its predictions, (McIlraith, S. A.; Weinberger, K. Q., Proc. of the 32nd AAAI Conf. on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symp. on Educational Advances in Artificial Intelligence (EAAI-18). Proc. of the 32nd AAAI Conf. on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symp. on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Feb. 2-7, 2018, AAAI Press), 3530-3537
[403] Z. Li, Q. Chen, V. Koltun, Combinatorial optimization with graph convolutional networks and guided tree search, in: Bengio et al. [59], pp. 537-546.
[404] Lian, C.; Ruan, S.; Denœux, T., Dissimilarity metric learning in the belief function framework, IEEE Trans. Fuzzy Syst., 24, 6, 1555-1564, 2016
[405] Liang, J. H.; Ganesh, V.; Poupart, P.; Czarnecki, K., Exponential recency weighted average branching heuristic for SAT solvers, (Schuurmans, D.; Wellman, M. P., Proc. 30th AAAI Conference on Artificial Intelligence. Proc. 30th AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, 2016, AAAI Press), 3434-3440
[406] Liang, J. H.; Ganesh, V.; Poupart, P.; Czarnecki, K., Learning rate based branching heuristic for SAT solvers, (Creignou, N.; Berre, D. L., Theory and Applications of Satisfiability Testing - SAT 2016 - Proc. 19th Int. Conf.. Theory and Applications of Satisfiability Testing - SAT 2016 - Proc. 19th Int. Conf., Bordeaux, July 5-8. Theory and Applications of Satisfiability Testing - SAT 2016 - Proc. 19th Int. Conf.. Theory and Applications of Satisfiability Testing - SAT 2016 - Proc. 19th Int. Conf., Bordeaux, July 5-8, LNCS, vol. 9710, 2016, Springer), 123-140 · Zbl 1475.68348
[407] Liang, J. H.; Oh, C.; Mathew, M.; Thomas, C.; Li, C.; Ganesh, V., Machine learning-based restart policy for CDCL SAT solvers, (Beyersdorff, O.; Wintersteiger, C. M., Proc. 21st Int. Conf. SAT’18 on Theory and Applications of Satisfiability Testing (SAT’18), Held as Part of the Federated Logic Conference, FloC 2018. Proc. 21st Int. Conf. SAT’18 on Theory and Applications of Satisfiability Testing (SAT’18), Held as Part of the Federated Logic Conference, FloC 2018, Oxford, July 9-12. Proc. 21st Int. Conf. SAT’18 on Theory and Applications of Satisfiability Testing (SAT’18), Held as Part of the Federated Logic Conference, FloC 2018. Proc. 21st Int. Conf. SAT’18 on Theory and Applications of Satisfiability Testing (SAT’18), Held as Part of the Federated Logic Conference, FloC 2018, Oxford, July 9-12, LNCS, vol. 10929, 2018, Springer), 94-110 · Zbl 1511.68253
[408] Liao, Q. V.; Varshney, K. R., Human-centered explainable AI (XAI): from algorithms to user experiences, 2022
[409] Lieber, J.; Nauer, E.; Prade, H.; Richard, G., Making the best of cases by approximation, interpolation and extrapolation, (Cox, M. T.; Funk, P.; Begum, S., Proc. 26th Int. Conf. on Case-Based Reasoning (ICCBR’18). Proc. 26th Int. Conf. on Case-Based Reasoning (ICCBR’18), Stockholm, July 9-12. Proc. 26th Int. Conf. on Case-Based Reasoning (ICCBR’18). Proc. 26th Int. Conf. on Case-Based Reasoning (ICCBR’18), Stockholm, July 9-12, LNCS, vol. 11156, 2018, Springer), 580-596
[410] Lienen, J.; Hüllermeier, E., Credal self-supervised learning, Adv. Neural Inf. Process. Syst., 34, 14370-14382, 2021
[411] Lienen, J.; Hüllermeier, E., From label smoothing to label relaxation, (Proc. 35th AAAI Conf. on Artificial Intelligence (AAAI’21), Virtual Event. Proc. 35th AAAI Conf. on Artificial Intelligence (AAAI’21), Virtual Event, Feb. 2-9, 2021), 8583-8591
[412] Lienen, J.; Hüllermeier, E., Mitigating label noise through data ambiguation, (Proc. 38th AAAI Conf. on Artificial Intelligence (AAAI’24). Proc. 38th AAAI Conf. on Artificial Intelligence (AAAI’24), Vancouver, Feb. 20-27, 2024), 13799-13807
[413] Lin, X.; Zhu, H.; Samanta, R.; Jagannathan, S., ART: abstraction refinement-guided training for provably correct neural networks, 2019, CoRR
[414] Linsley, D.; Eberhardt, S.; Sharma, T.; Gupta, P.; Serre, T., What are the visual features underlying human versus machine vision?, (Proc. IEEE Int. Conf. on Computer Vision Workshops, 2017), 2706-2714
[415] Lipton, Z. C., The mythos of model interpretability: in machine learning, the concept of interpretability is both important and slippery, Queue, 16, 3, 31-57, 2018
[416] Little, R. J.; Rubin, D. B., Statistical Analysis with Missing Data, vol. 793, 2019, Wiley · Zbl 1411.62006
[417] Liu, L.; Dietterich, T., Learnability of the superset label learning problem, (Int. Conf. on Machine Learning, 2014), 1629-1637
[418] Liu, N.; Yang, H.; Hu, X., Adversarial detection with model interpretation, (Guo, Y.; Farooq, F., Proc. of the 24th ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining (KDD’18). Proc. of the 24th ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining (KDD’18), London, Aug. 19-23, 2018, ACM), 1803-1811
[419] Liu, W.; Zhou, P.; Zhao, Z.; Wang, Z.; Ju, Q.; Deng, H.; Wang, P., K-BERT: enabling language representation with knowledge graph, (Proc. 34th AAAI Conf. on Artificial Intelligence (AAAI’20). Proc. 34th AAAI Conf. on Artificial Intelligence (AAAI’20), New York, NY, Feb. 7-12, 2020, AAAI Press), 2901-2908
[420] Locatello, F.; Bauer, S.; Lucic, M.; Gelly, S.; Schölkopf, B.; Bachem, O., Challenging common assumptions in the unsupervised learning of disentangled representations, 2018, CoRR
[421] Loos, S. M.; Irving, G.; Szegedy, C.; Kaliszyk, C., Deep network guided proof search, (Eiter, T.; Sands, D., Proc. 21st Int. Conf. on Logic for Programming, Artificial Intelligence and Reasoning (LPAR’17). Proc. 21st Int. Conf. on Logic for Programming, Artificial Intelligence and Reasoning (LPAR’17), Maun, Botswana, May 7-12. Proc. 21st Int. Conf. on Logic for Programming, Artificial Intelligence and Reasoning (LPAR’17). Proc. 21st Int. Conf. on Logic for Programming, Artificial Intelligence and Reasoning (LPAR’17), Maun, Botswana, May 7-12, EPiC Series in Computing, vol. 46, 2017, EasyChair), 85-105 · Zbl 1403.68197
[422] Lopez-Paz, D.; Nishihara, R.; Chintala, S.; Scholkopf, B.; Bottou, L., Discovering causal signals in images, (Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2017), 6979-6987
[423] Loquin, K.; Strauss, O., On the granularity of summative kernels, Fuzzy Sets Syst., 159, 15, 1952-1972, 2008 · Zbl 1172.94014
[424] Lundberg, S. M.; Lee, S., A unified approach to interpreting model predictions, (Advances in Neural Information Processing Systems 30: Annual Conf. on Neural Information Processing Systems. Advances in Neural Information Processing Systems 30: Annual Conf. on Neural Information Processing Systems, Long Beach, Dec. 4-9, 2017), 4765-4774
[425] Luo, C.; Cai, S.; Wu, W.; Jie, Z.; Su, K., CCLS: an efficient local search algorithm for weighted maximum satisfiability, IEEE Trans. Comput., 64, 7, 1830-1843, 2015 · Zbl 1360.68786
[426] Mahinpei, A.; Clark, J.; Lage, I.; Doshi-Velez, F.; Pan, W., Promises and pitfalls of black-box concept learning models, 2021, arXiv preprint
[427] (Majumdar, R.; Kuncak, V., Proc. 29th Int. Conf. on Computer Aided Verification (CAV’17), Part I. Proc. 29th Int. Conf. on Computer Aided Verification (CAV’17), Part I, Heidelberg, July 24-28. Proc. 29th Int. Conf. on Computer Aided Verification (CAV’17), Part I. Proc. 29th Int. Conf. on Computer Aided Verification (CAV’17), Part I, Heidelberg, July 24-28, LNCS, vol. 10426, 2017, Springer)
[428] D. Malioutov, K.S. Meel, MLIC: A MaxSAT-based framework for learning interpretable classification rules, in: Hooker [317], pp. 312-327.
[429] Mallat, S., Sciences des Données et Apprentissage en Grande Dimension. Leçons Inaugurales du Collège de France, 2018, Fayard: Fayard Paris
[430] Mallen, A.; Asai, A.; Zhong, V.; Das, R.; Khashabi, D.; Hajishirzi, H., When not to trust language models: investigating effectiveness of parametric and non-parametric memories, (Rogers, A.; Boyd-Graber, J.; Okazaki, N., Proc. of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), July 2023, Association for Computational Linguistics: Association for Computational Linguistics Toronto, Canada), 9802-9822
[431] Mamdani, E. H.; Assilian, S., An experiment in linguistic synthesis with a fuzzy logic controller, Int. J. Man-Mach. Stud., 7, 1, 1-13, 1975 · Zbl 0301.68076
[432] R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester, L. De Raedt, DeepProbLog: Neural probabilistic logic programming, in: Bengio et al. [59], pp. 3753-3763.
[433] Manhaeve, R.; Marra, G.; Demeester, T.; Dumancic, S.; Kimmig, A.; De Raedt, L., Neuro-symbolic AI = neural + logical + probabilistic AI, (Hitzler, P.; Sarker, M. K., Neuro-Symbolic Artificial Intelligence: The State of the Art, vol. 342, 2021, IOS Press), 173-191
[434] Mao, J.; Gan, C.; Kohli, P.; Tenenbaum, J. B.; Wu, J., The neuro-symbolic concept learner: interpreting scenes, words, and sentences from natural supervision, (Proc. 7th Int. Conf. on Learning Representations (ICLR’19). Proc. 7th Int. Conf. on Learning Representations (ICLR’19), New Orleans, May 6-9, 2019, OpenReview.net)
[435] Marques-Silva, J., Logic-based explainability in machine learning, (Bertossi, L. E.; Xiao, G., Reasoning Web. Causality, Explanations and Declarative Knowledge - 18th Int. Summer School 2022, Tutorial Lectures. Reasoning Web. Causality, Explanations and Declarative Knowledge - 18th Int. Summer School 2022, Tutorial Lectures, Berlin, Germany, September 27-30, 2022. Reasoning Web. Causality, Explanations and Declarative Knowledge - 18th Int. Summer School 2022, Tutorial Lectures. Reasoning Web. Causality, Explanations and Declarative Knowledge - 18th Int. Summer School 2022, Tutorial Lectures, Berlin, Germany, September 27-30, 2022, LNCS, vol. 13759, 2022, Springer), 24-104
[436] Marques-Silva, J.; Gerspacher, T.; Cooper, M. C.; Ignatiev, A.; Narodytska, N., Explanations for monotonic classifiers, (Meila, M.; Zhang, T., Proc. 38th Int. Conf. Mach. Learn. (ICML’21). Proc. 38th Int. Conf. Mach. Learn. (ICML’21), PMLR, vol. 139, 2021), 7469-7479
[437] Marques-Silva, J.; Ignatiev, A., Delivering trustworthy AI through formal XAI, (Proc. 36th AAAI Conf. on Artificial Intelligence (AAAI’22), Virtual Event. Proc. 36th AAAI Conf. on Artificial Intelligence (AAAI’22), Virtual Event, Feb. 22 - Mar. 1, 2022, AAAI Press), 12342-12350
[438] Marques-Silva, J.; Ignatiev, A., No silver bullet: interpretable ML models must be explained, Front. Artif. Intell., 6, 2023
[439] Marques-Silva, J.; Lynce, I.; Malik, S., Conflict-driven clause learning SAT solvers, (Biere, A.; Heule, M.; van Maaren, H.; Walsh, T., Handbook of Satisfiability. Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 336, 2021, IOS Press), 133-182 · Zbl 1456.68001
[440] Marquis, P., Compile!, (Bonet, B.; Koenig, S., Proc. 29th AAAI Conf. on Artificial Intelligence (AAAI’15), 2015, AAAI Press), 4112-4118
[441] Marra, G.; Dumancic, S.; Manhaeve, R.; Raedt, L. D., From statistical relational to neural symbolic artificial intelligence: a survey, Artif. Intell., 328, Article 104062 pp., 2024, Revised version in · Zbl 1537.68162
[442] Marra, G.; Kuzelka, O., Neural Markov logic networks, (de Campos, C. P.; Maathuis, M. H.; Quaeghebeur, E., Proc. 37th Conf. on Uncertainty in Artificial Intelligence (UAI’21), Virtual Event. Proc. 37th Conf. on Uncertainty in Artificial Intelligence (UAI’21), Virtual Event, 27-30 July. Proc. 37th Conf. on Uncertainty in Artificial Intelligence (UAI’21), Virtual Event. Proc. 37th Conf. on Uncertainty in Artificial Intelligence (UAI’21), Virtual Event, 27-30 July, Proc. of Machine Learning Research, vol. 161, 2021, AUAI Press), 908-917
[443] Marsala, C.; Bouchon-Meunier, B., Quality of measures for attribute selection in fuzzy decision trees, (Proc IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE’10). Proc IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE’10), Barcelona, July 18-23, 2010), 1-8
[444] Martins, R.; Manquinho, V. M.; Open-wbo, I. Lynce, A modular MaxSAT solver, (Sinz, C.; Egly, U., Proc. 17th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT’14). Proc. 17th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT’14), LNCS, vol. 8561, 2014, Springer), 438-445 · Zbl 1423.68461
[445] Matos, P. J.; Planes, J.; Letombe, F.; Marques-Silva, J., A MAX-SAT algorithm portfolio, (Ghallab, M.; Spyropoulos, C. D.; Fakotakis, N.; Avouris, N. M., ECAI 2008 - 18th European Conference on Artificial Intelligence, Proceedings. ECAI 2008 - 18th European Conference on Artificial Intelligence, Proceedings, Patras, Greece, July 21-25, 2008. ECAI 2008 - 18th European Conference on Artificial Intelligence, Proceedings. ECAI 2008 - 18th European Conference on Artificial Intelligence, Proceedings, Patras, Greece, July 21-25, 2008, Frontiers in Artificial Intelligence and Applications, vol. 178, 2008, IOS Press), 911-912
[446] Mauris, G., A review of relationships between possibility and probability representations of uncertainty in measurement, IEEE Trans. Instrum. Meas., 62, 3, 622-632, 2013
[447] Meilicke, C.; Wudage Chekol, M.; Fink, M.; Stuckenschmidt, H., Reinforced anytime bottom up rule learning for knowledge graph completion, 2020, CoRR
[448] Messai, N.; Devignes, M.; Napoli, A.; Smaïl-Tabbone, M., Many-valued concept lattices for conceptual clustering and information retrieval, (Ghallab, M.; Spyropoulos, C. D.; Fakotakis, N.; Avouris, N. M., Proc. 18th Europ. Conf. on Artificial Intelligence (ECAI’08). Proc. 18th Europ. Conf. on Artificial Intelligence (ECAI’08), Patras, July 21-25. Proc. 18th Europ. Conf. on Artificial Intelligence (ECAI’08). Proc. 18th Europ. Conf. on Artificial Intelligence (ECAI’08), Patras, July 21-25, Frontiers in Artificial Intelligence and Applications, vol. 178, 2008, IOS Press), 127-131
[449] Miclet, L.; Bayoudh, S.; Delhay, A., Analogical dissimilarity: definition, algorithms and two experiments in machine learning, J. Artif. Intell. Res., 32, 793-824, 2008 · Zbl 1183.68489
[450] Miclet, L.; Prade, H., Handling analogical proportions in classical logic and fuzzy logics settings, (Proc. 10th Eur. Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’09). Proc. 10th Eur. Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’09), LNCS, vol. 5590, 2009, Springer), 638-650 · Zbl 1245.03046
[451] Miller, T., “But why?” understanding explainable artificial intelligence, ACM Crossroads, 25, 3, 20-25, 2019
[452] Miller, T., Explanation in artificial intelligence: insights from the social sciences, Artif. Intell., 267, 1-38, 2019 · Zbl 1478.68274
[453] Miller, T., Contrastive explanation: a structural-model approach, Knowl. Eng. Rev., 36, 2021
[454] Minervini, P.; Bosnjak, M.; Rocktäschel, T.; Riedel, S., Towards neural theorem proving at scale, 2018, CoRR
[455] Minton, S., Quantitative results concerning the utility of explanation-based learning, Artif. Intell., 42, 2-3, 363-391, 1990
[456] Minton, S.; Carbonell, J. G., Strategies for learning search control rules: an explanation-based approach, (Proc. 10th Int. Joint Conf. on Artificial Intelligence (IJCAI’87). Proc. 10th Int. Joint Conf. on Artificial Intelligence (IJCAI’87), Milan, Aug. 23-28, 1987), 228-235
[457] Mirkin, B., Core Concepts in Data Analysis: Summarization, Correlation, Visualization, 2011, Springer · Zbl 1219.68007
[458] Mirman, M.; Gehr, T.; Vechev, M. T., Differentiable abstract interpretation for provably robust neural networks, (Dy, J. G.; Krause, A., Proc. of the 35th Int. Conf. on Machine Learning, ICML’18. Proc. of the 35th Int. Conf. on Machine Learning, ICML’18, Stockholm, July 10-15. Proc. of the 35th Int. Conf. on Machine Learning, ICML’18. Proc. of the 35th Int. Conf. on Machine Learning, ICML’18, Stockholm, July 10-15, Proceedings of Machine Learning Research, vol. 80, 2018, PMLR), 3575-3583
[459] Mitchell, T., Version spaces: an approach to concept learning, 1979, Stanford University, PhD thesis
[460] Mitchell, T., Machine Learning, 1997, McGraw-Hill · Zbl 0913.68167
[461] Mitchell, T. M., Version spaces: a candidate elimination approach to rule learning, (Reddy, R., Proc. 5th Int. Joint Conf. on Artificial Intelligence. Proc. 5th Int. Joint Conf. on Artificial Intelligence, Cambridge, MA, Aug. 22-25, 1977, 1977, William Kaufmann), 305-310
[462] Mitchell, T. M.; Keller, R. M.; Kedar-Cabelli, S. T., Explanation-based generalization: a unifying view, Mach. Learn., 1, 47-80, 1986
[463] Mittelstadt, B. D.; Russell, C.; Wachter, S., Explaining explanations in AI, (Proc. Conf. on Fairness, Accountability, and Transparency (FAT’19). Proc. Conf. on Fairness, Accountability, and Transparency (FAT’19), Atlanta, Jan. 29-31, 2019, ACM), 279-288
[464] Molek, V.; Perfilieva, I., Scale-space theory, F-transform kernels and CNN realization, (Advances in Computational Intelligence - Proc. 15th Int. Work-Conf. on Artificial Neural Networks, IWANN 2019, Part II. Advances in Computational Intelligence - Proc. 15th Int. Work-Conf. on Artificial Neural Networks, IWANN 2019, Part II, Gran Canaria, June 12-14, 2019), 38-48
[465] Molnar, C., Interpretable Machine Learning, 2022
[466] Montalván Hernández, D. R.; Centen, T.; Krak, T.; Quaeghebeur, E.; de Campos, C., Beyond tree-shaped credal probabilistic circuits, Int. J. Approx. Reason., 2023, this issue: 109047
[467] Montavon, G.; Samek, W.; Müller, K., Methods for interpreting and understanding deep neural networks, Digit. Signal Process., 73, 1-15, 2018
[468] Mueller, M.; Kramer, S., Integer linear programming models for constrained clustering, (Discovery Science - Proc. 13th Int. Conf. DS’10. Discovery Science - Proc. 13th Int. Conf. DS’10, Canberra, Oct. 6-8, 2010), 159-173
[469] Mueller, S. T.; Hoffman, R. R.; Clancey, W. J.; Emrey, A.; Klein, G., Explanation in human-AI systems: a literature meta-review, synopsis of key ideas and publications, and bibliography for explainable AI, 2019, CoRR
[470] Muggleton, S., Inverse entailment and Progol, New Gener. Comput., 13, 3-4, 245-286, 1995
[471] Muggleton, S.; De Raedt, L., Inductive logic programming: theory and methods, J. Log. Program., 19/20, 629-679, 1994 · Zbl 0816.68043
[472] Muggleton, S. H.; Schmid, U.; Zeller, C.; Tamaddoni-Nezhad, A.; Besold, T. R., Ultra-strong machine learning: comprehensibility of programs learned with ILP, Mach. Learn., 107, 7, 1119-1140, 2018 · Zbl 1461.68191
[473] Nair, V.; Hinton, G. E., Rectified linear units improve restricted Boltzmann machines, (Fürnkranz, J.; Joachims, T., Proc. 27th Int. Conf. on Machine Learning (ICML-10). Proc. 27th Int. Conf. on Machine Learning (ICML-10), Haifa, June 21-24, 2010, Omnipress), 807-814
[474] N. Narodytska, Formal analysis of deep binarized neural networks, in: Lang [390], pp. 5692-5696.
[475] N. Narodytska, A. Ignatiev, F. Pereira, J. Marques-Silva, Learning optimal decision trees with SAT, in: Lang [390], pp. 1362-1368.
[476] Narodytska, N.; Kasiviswanathan, S. P.; Ryzhyk, L.; Sagiv, M.; Walsh, T., Verifying properties of binarized deep neural networks, (Proc. 32nd AAAI Conf. on Artificial Intelligence, (AAAI-18). Proc. 32nd AAAI Conf. on Artificial Intelligence, (AAAI-18), New Orleans, Feb. 2-7, 2018), 6615-6624
[477] N. Narodytska, A.A. Shrotri, K.S. Meel, A. Ignatiev, J. Marques-Silva, Assessing heuristic machine learning explanations with model counting, in: Janota and Lynce [352], pp. 267-278. · Zbl 1441.68211
[478] Nghiem, N.; Vrain, C.; Dao, T., Knowledge integration in deep clustering, (Amini, M.; Canu, S.; Fischer, A.; Guns, T.; Novak, P. K.; Tsoumakas, G., Proc. European Conf. on Machine Learning and Knowledge Discovery in Databases (ECML PKDD’22), Part I. Proc. European Conf. on Machine Learning and Knowledge Discovery in Databases (ECML PKDD’22), Part I, Grenoble, Sept. 19-23. Proc. European Conf. on Machine Learning and Knowledge Discovery in Databases (ECML PKDD’22), Part I. Proc. European Conf. on Machine Learning and Knowledge Discovery in Databases (ECML PKDD’22), Part I, Grenoble, Sept. 19-23, LNCS, vol. 13713, 2022, Springer), 174-190
[479] Nguyen, H. T., On random sets and belief functions, J. Math. Anal. Appl., 65, 531-542, 1978 · Zbl 0409.60016
[480] Nguyen, V.-L.; Hüllermeier, E., Multilabel classification with partial abstention: Bayes-optimal prediction under label independence, J. Artif. Intell. Res., 72, 613-665, 2021 · Zbl 1522.68476
[481] Nijssen, S., Bayes optimal classification for decision trees, (Cohen, W. W.; McCallum, A.; Roweis, S. T., Proc. 25th Int.Conf. on Machine Learning (ICML’08). Proc. 25th Int.Conf. on Machine Learning (ICML’08), Helsinki, June 5-9. Proc. 25th Int.Conf. on Machine Learning (ICML’08). Proc. 25th Int.Conf. on Machine Learning (ICML’08), Helsinki, June 5-9, ACM Int. Conf. Proceeding Series, vol. 307, 2008, ACM), 696-703
[482] Nijssen, S.; Fromont, É., Mining optimal decision trees from itemset lattices, (Berkhin, P.; Caruana, R.; Wu, X., Proc. 13th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining. Proc. 13th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, San Jose, Aug. 12-15, 2007, ACM), 530-539
[483] Nijssen, S.; Fromont, É., Optimal constraint-based decision tree induction from itemset lattices, Data Min. Knowl. Discov., 21, 1, 9-51, 2010
[484] Nin, J.; Laurent, A.; Poncelet, P., Speed up gradual rule mining from stream data! A B-tree and owa-based approach, J. Intell. Inf. Syst., 35, 3, 447-463, 2010
[485] Ouali, A.; Zimmermann, A.; Loudni, S.; Lebbah, Y.; Crémilleux, B.; Boizumault, P.; Loukil, L., Integer linear programming for pattern set mining, with an application to tiling, (Proc. 21st Pacific-Asia Conf. in Knowledge Discovery and Data Mining (PAKDD’17), Part II. Proc. 21st Pacific-Asia Conf. in Knowledge Discovery and Data Mining (PAKDD’17), Part II, Jeju, South Korea, May 23-26, 2017), 286-299
[486] Paliwal, A.; Loos, S. M.; Rabe, M. N.; Bansal, K.; Szegedy, C., Graph representations for higher-order logic and theorem proving, 2019, CoRR
[487] R.B. Palm, U. Paquet, O. Winther, Recurrent relational networks, in: Bengio et al. [59], pp. 3372-3382.
[488] Panda, P.; Roy, K., Explainable learning: implicit generative modelling during training for adversarial robustness, 2018, CoRR
[489] E. Parisotto, A. Mohamed, R. Singh, L. Li, D. Zhou, P. Kohli, Neuro-symbolic program synthesis, in: Proc. 5th Int. Conf. on Learning Representations (ICLR’17), Toulon, Apr. 24-26, [338].
[490] Parsons, S., Qualitative Approaches for Reasoning Under Uncertainty, 2001, MIT Press · Zbl 0998.68178
[491] Pawlak, Z., Rough Sets. Theoretical Aspects of Reasoning About Data, 1991, Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht · Zbl 0758.68054
[492] Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, 1988, Morgan Kaufmann
[493] Pearl, J., Causality, 2009, Cambridge University Press · Zbl 1188.68291
[494] Pearl, J.; Glymour, M.; Jewell, N. P., Causal Inference in Statistics: A Primer, 2016, John Wiley & Sons · Zbl 1332.62001
[495] Pearl, J.; Mackenzie, D., The Book of Why: The New Science of Cause and Effect, 2018, Basic Books · Zbl 1416.62026
[496] Pedrycz, W., Conditional fuzzy clustering in the design of radial basis function neural networks, IEEE Trans. Neural Netw., 9, 4, 601-612, 1998
[497] Pinkas, G., Symmetric neural networks and propositional logic satisfiability, Neural Comput., 3, 2, 282-291, 1991
[498] Pinkas, G., Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional knowledge, Artif. Intell., 77, 2, 203-247, 1995 · Zbl 1013.68505
[499] Pinkas, G.; Cohen, S., High-order networks that learn to satisfy logic constraints, J. Appl. Log. - IfCoLog J. Log. Appl., 6, 4, 653-694, 2019 · Zbl 1514.68260
[500] Plotkin, G., A note on inductive generalization, Machine Intelligence, vol. 5, 153-163, 1970, Edinburgh University Press · Zbl 0219.68045
[501] Prade, H.; Richard, G., From analogical proportion to logical proportions, Log. Univers., 7, 4, 441-505, 2013 · Zbl 1323.03011
[502] Prade, H.; Richard, G., Analogical proportions: from equality to inequality, Int. J. Approx. Reason., 101, 234-254, 2018 · Zbl 1448.68400
[503] Prade, H.; Rico, A.; Serrurier, M., Elicitation of Sugeno integrals: a version space learning perspective, (Rauch, J.; Ras, Z. W.; Berka, P.; Elomaa, T., Proc. 18th Int. Symp. on Foundations of Intelligent Systems (ISMIS’09). Proc. 18th Int. Symp. on Foundations of Intelligent Systems (ISMIS’09), Prague, Sept. 14-17. Proc. 18th Int. Symp. on Foundations of Intelligent Systems (ISMIS’09). Proc. 18th Int. Symp. on Foundations of Intelligent Systems (ISMIS’09), Prague, Sept. 14-17, LNCS, vol. 5722, 2009, Springer), 392-401
[504] Prade, H.; Rico, A.; Serrurier, M.; Raufaste, E., Elicitating Sugeno integrals: methodology and a case study, (Sossai, C.; Chemello, G., Proc. 10th Eur. Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’09). Proc. 10th Eur. Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’09), Verona, July 1-3. Proc. 10th Eur. Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’09). Proc. 10th Eur. Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’09), Verona, July 1-3, LNCS, vol. 5590, 2009, Springer), 712-723 · Zbl 1245.91023
[505] M.O.R. Prates, P.H.C. Avelar, H. Lemos, L.C. Lamb, M.Y. Vardi, Learning to solve NP-complete problems: A graph neural network for decision TSP, in: Proc. 33rd AAAI Conf. on Artificial Intelligence (AAAI’19), Honolulu, Jan. 27 - Feb. 1, pp. 4731-4738.
[506] Prestwich, S.; Wilson, N., A statistical approach to learning constraints, Int. J. Approx. Reason., 2024, this issue: 109184 · Zbl 07885922
[507] Procopio, A.; Cesarelli, G.; Donisi, L.; Merola, A.; Amato, F.; Cosentino, C., Combined mechanistic modeling and machine-learning approaches in systems biology-a systematic literature review, Comput. Methods Programs Biomed., Article 107681 pp., 2023
[508] Pryor, C.; Dickens, C.; Augustine, E.; Albalak, A.; Wang, W.; Getoor, L., Neupsl: Neural Probabilistic Soft Logic, 2023
[509] Pulina, L.; Tacchella, A., An abstraction-refinement approach to verification of artificial neural networks, (Touili, T.; Cook, B.; Jackson, P. B., Proc. 22nd Int. Conf. on Computer Aided Verification (CAV’10). Proc. 22nd Int. Conf. on Computer Aided Verification (CAV’10), Edinburgh, July 15-19. Proc. 22nd Int. Conf. on Computer Aided Verification (CAV’10). Proc. 22nd Int. Conf. on Computer Aided Verification (CAV’10), Edinburgh, July 15-19, LNCS, vol. 6174, 2010, Springer), 243-257
[510] Qin, C.; Dvijotham, K. D.; O’Donoghue, B.; Bunel, R.; Stanforth, R.; Gowal, S.; Uesato, J.; Swirszcz, G.; Kohli, P., Verification of non-linear specifications for neural networks, (Proc. 7th Int. Conf. on Learning Representations (ICLR’19). Proc. 7th Int. Conf. on Learning Representations (ICLR’19), New Orleans, May 6-9, 2019, OpenReview.net)
[511] Quinlan, J. R., Learning first-order definitions of functions, CoRR, cs.AI/9610102, 1996 · Zbl 0900.68368
[512] Quost, B.; Denœux, T.; Li, S., Parametric classification with soft labels using the evidential EM algorithm: linear discriminant analysis versus logistic regression, Adv. Data Anal. Classif., 11, 4, 659-690, Dec 2017 · Zbl 1414.62265
[513] Quost, B.; Masson, M.-H.; Denœux, T., Classifier fusion in the Dempster-Shafer framework using optimized t-norm based combination rules, Int. J. Approx. Reason., 52, 3, 353-374, 2011
[514] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707, 2019 · Zbl 1415.68175
[515] Ramasesh, V. V.; Dyer, E.; Raghu, M., Anatomy of catastrophic forgetting: hidden representations and task semantics, (Proc. 9th Int. Conf. on Learning Representations (ICLR’21), Virtual Event. Proc. 9th Int. Conf. on Learning Representations (ICLR’21), Virtual Event, Austria, May 3-7, 2021)
[516] Ramasso, E.; Denœux, T., Making use of partial knowledge about hidden states in HMMs: an approach based on belief functions, IEEE Trans. Fuzzy Syst., 21, 6, 1-11, 2013
[517] M.T. Ribeiro, S. Singh, C. Guestrin, “Why should I trust you?”: Explaining the predictions of any classifier, in: Krishnapuram et al. [379], pp. 1135-1144.
[518] Ribeiro, M. T.; Singh, S.; Anchors, C. Guestrin, High-precision model-agnostic explanations, (McIlraith, S. A.; Weinberger, K. Q., Proc. 32nd AAAI Conf. on Artificial Intelligence (AAAI-18). Proc. 32nd AAAI Conf. on Artificial Intelligence (AAAI-18), New Orleans, Feb. 2-7, 2018), 1527-1535
[519] Richardson, M.; Domingos, P. M., Markov logic networks, Mach. Learn., 62, 1-2, 107-136, 2006 · Zbl 1470.68221
[520] Riedel, S.; Yao, L.; McCallum, A., Modeling relations and their mentions without labeled text, (Joint European Conf. on Machine Learning and Knowledge Discovery in Databases, 2010, Springer), 148-163
[521] Riedel, S.; Yao, L.; McCallum, A.; Marlin, B. M., Relation extraction with matrix factorization and universal schemas, (Vanderwende, L.; Daumé, H.; Kirchhoff, K., Proc. Human Language Technologies: Conf. North American Chapter of the Association of Computational Linguistics (HLT-NAACL’13). Proc. Human Language Technologies: Conf. North American Chapter of the Association of Computational Linguistics (HLT-NAACL’13), Atlanta, June 9-14, 2013), 74-84
[522] Rocktäschel, T.; Riedel, S., Learning knowledge base inference with neural theorem provers, (Pujara, J.; Rocktäschel, T.; Chen, D.; Singh, S., Proc. 5th Workshop on Automated Knowledge Base Construction, AKBC@NAACL-HLT 2016. Proc. 5th Workshop on Automated Knowledge Base Construction, AKBC@NAACL-HLT 2016, San Diego, June 17, 2016, The Association for Computer Linguistics), 45-50
[523] T. Rocktäschel, S. Riedel, End-to-end differentiable proving, in: Guyon et al. [293], pp. 3788-3800.
[524] Rodriguez, C.; Bordini, V. M.; Destercke, S.; Quost, B., Self learning using Venn-Abers predictors, (Conformal and Probabilistic Prediction with Applications, 2023, PMLR), 234-250
[525] Rodriguez, P.; Caccia, M.; Lacoste, A.; Zamparo, L.; Laradji, I.; Charlin, L.; Vazquez, D., Beyond trivial counterfactual explanations with diverse valuable explanations, (Int. Conf in Computer Vision (ICCV), 2021)
[526] Rogova, G., Combining the results of several neural network classifiers, Neural Netw., 7, 5, 777-781, 1994
[527] Rosenblatt, F., The perceptron: a probabilistic model for information storage and organization in the brain, Psychol. Rev., 65, 6, 386-408, 1958
[528] Ross, A. S.; Doshi-Velez, F., Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients, (Proc. 32nd AAAI Conf. on Artificial Intelligence, (AAAI-18). Proc. 32nd AAAI Conf. on Artificial Intelligence, (AAAI-18), New Orleans, Feb. 2-7, 2018), 1660-1669
[529] (Rossi, F.; van Beek, P.; Walsh, T., Handbook of Constraint Programming. Handbook of Constraint Programming, Foundations of Artificial Intelligence, vol. 2, 2006, Elsevier) · Zbl 1175.90011
[530] Rousset, M.; Safar, B., Negative and positive explanations in expert, Appl. Artif. Intell., 1, 1, 25-38, 1987
[531] W. Ruan, X. Huang, M. Kwiatkowska, Reachability analysis of deep neural networks with provable guarantees, in: Lang [390], pp. 2651-2659.
[532] Rudin, C., Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead, Nat. Mach. Intell., 1, 5, 206-215, 2019
[533] Rumelhart, D. E.; McClelland, J. L.; Group, P. R., Parallel Distributed Processing, Volume 1: Explorations in the Microstructure of Cognition: Foundations, 1986, The MIT Press
[534] Ruschel, A.; Colombini Gusmão, A.; Gagliardi Cozman, F., Explaining answers generated by knowledge graph embeddings, Int. J. Approx. Reason., 2024, this issue: 109183 · Zbl 07885921
[535] Russell, B., The Problems of Philosophy. Chap. VI. on Induction, Home Univ. Libr., Oxford Univ. Pr., 1959, 1912
[536] Russell, S. J., Unifying logic and probability, Commun. ACM, 58, 7, 88-97, 2015
[537] Huanga, H. X.S. H., Extract intelligible and concise fuzzy rules from neural networks, Fuzzy Sets Syst., 132, 233-243, 2002 · Zbl 1008.68579
[538] Salmon, W. C., Causality and Explanation, 1998, Oxford University Press
[539] (Samek, W.; Montavon, G.; Vedaldi, A.; Hansen, L. K.; Müller, K., Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, LNCS, vol. 11700, 2019, Springer)
[540] W. Samek, K. Müller, Towards explainable artificial intelligence, in: Samek et al. [539], pp. 5-22.
[541] Sanchez, E., Resolution of composite fuzzy relation equations, Inf. Control, 30, 1, 38-48, 1976 · Zbl 0326.02048
[542] Sap, M.; Le Bras, R.; Allaway, E.; Bhagavatula, C.; Lourie, N.; Rashkin, H.; Roof, B.; Smith, N. A.; Choi, Y., ATOMIC: an atlas of machine commonsense for if-then reasoning, (Proc. of the 33rd AAAI Conf. on Artificial Intelligence. Proc. of the 33rd AAAI Conf. on Artificial Intelligence, Honolulu, Jan. 27 - Feb. 1, 2019), 3027-3035
[543] Saxton, D.; Grefenstette, E.; Hill, F.; Kohli, P., Analysing mathematical reasoning abilities of neural models, (Proc. 7th Int. Conf. on Learning Representations (ICLR’19). Proc. 7th Int. Conf. on Learning Representations (ICLR’19), New Orleans, May 6-9, 2019, OpenReview.net)
[544] Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; Monfardini, G., The graph neural network model, IEEE Trans. Neural Netw., 20, 1, 61-80, 2009
[545] Schiex, T.; Fargier, H.; Verfaillie, G., Valued constraint satisfaction problems: hard and easy problems, (Proc. 14th Int. Joint Conf. on Artificial Intelligence (IJCAI’95), 1995, Morgan Kaufmann), 631-639
[546] Schockaert, S., Embeddings as epistemic states: limitations on the use of pooling operators for accumulating knowledge, Int. J. Approx. Reason., 2023, this issue: 108981
[547] Schockaert, S.; Prade, H., Interpolative and extrapolative reasoning in propositional theories using qualitative knowledge about conceptual spaces, Artif. Intell., 202, 86-131, 2013 · Zbl 1329.68245
[548] Schumann, J.; Nelson, S. D., Toward V&V of neural network based controllers, (Garlan, D.; Kramer, J.; Wolf, A. L., Proc. 1st Workshop on Self-Healing Systems (WOSS’02). Proc. 1st Workshop on Self-Healing Systems (WOSS’02), South Carolina, Nov. 18-19, 2002, 2002, ACM), 67-72
[549] Schwind, N.; Inoue, K.; Marquis, P., Editing Boolean classifiers: a belief change perspective, (Williams, B.; Chen, Y.; Neville, J., Proc. 37th AAAI Conf. on Artificial Intelligence, (AAAI’23). Proc. 37th AAAI Conf. on Artificial Intelligence, (AAAI’23), Washington, DC, Feb. 7-14, 2023, 2023, AAAI Press), 6516-6524
[550] D. Selsam, N. Bjørner, Guiding high-performance SAT solvers with unsat-core predictions, in: Janota and Lynce [352], pp. 336-353. · Zbl 1441.68239
[551] Selsam, D.; Lamm, M.; Bünz, B.; Liang, P.; de Moura, L.; Dill, D. L., Learning a SAT solver from single-bit supervision, 2018, CoRR
[552] Selsam, D.; Lamm, M.; Bünz, B.; Liang, P.; de Moura, L.; Dill, D. L., Learning a SAT solver from single-bit supervision, (Proc. 7th Int. Conf. on Learning Representations (ICLR’19). Proc. 7th Int. Conf. on Learning Representations (ICLR’19), New Orleans, May 6-9, 2019, OpenReview.net)
[553] Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D., Grad-CAM: visual explanations from deep networks via gradient-based localization, Int. J. Comput. Vis., 128, 2, 336-359, 2019
[554] Serafini, L.; d’Avila Garcez, A. S., Learning and reasoning with logic tensor networks, (Adorni, G.; Cagnoni, S.; Gori, M.; Maratea, M., AI*IA 2016: Advances in Artificial Intelligence - Proc. XVth Int. Conf. of the Italian Association for Artificial Intelligence. AI*IA 2016: Advances in Artificial Intelligence - Proc. XVth Int. Conf. of the Italian Association for Artificial Intelligence, Genova, Nov. 29 - Dec. 1. AI*IA 2016: Advances in Artificial Intelligence - Proc. XVth Int. Conf. of the Italian Association for Artificial Intelligence. AI*IA 2016: Advances in Artificial Intelligence - Proc. XVth Int. Conf. of the Italian Association for Artificial Intelligence, Genova, Nov. 29 - Dec. 1, LNCS, vol. 10037, 2016, Springer), 334-348 · Zbl 1430.68317
[555] Serrurier, M.; Dubois, D.; Prade, H.; Sudkamp, T., Learning fuzzy rules with their implication operators, Data Knowl. Eng., 60, 1, 71-89, 2007
[556] Serrurier, M.; Mamalet, F.; Fel, T.; Béthune, L.; Boissin, T., On the explainable properties of 1-Lipschitz neural networks: an optimal transport perspective, (Advances in Neural Information Processing Systems (NeurIPS’23), 2023)
[557] Serrurier, M.; Prade, H., Introducing possibilistic logic in ILP for dealing with exceptions, Artif. Intell., 171, 16-17, 939-950, 2007 · Zbl 1168.68572
[558] Serrurier, M.; Prade, H., An informational distance for estimating the faithfulness of a possibility distribution, viewed as a family of probability distributions, with respect to data, Int. J. Approx. Reason., 54, 7, 919-933, 2013 · Zbl 1316.68191
[559] Serrurier, M.; Prade, H., Entropy evaluation based on confidence intervals of frequency estimates: application to the learning of decision trees, (Bach, F. R.; Blei, D. M., Proc. 32nd Int. Conf. on Machine Learning (ICML’15). Proc. 32nd Int. Conf. on Machine Learning (ICML’15), Lille, July 6-11. Proc. 32nd Int. Conf. on Machine Learning (ICML’15). Proc. 32nd Int. Conf. on Machine Learning (ICML’15), Lille, July 6-11, JMLR Workshop and Conf. Proc., vol. 37, 2015, JMLR.org), 1576-1584
[560] S.A. Seshia, A. Desai, T. Dreossi, D.J. Fremont, S. Ghosh, E. Kim, S. Shivakumar, M. Vazquez-Chanlatte, X. Yue, Formal specification for deep neural networks, in: Lahiri and Wang [387], pp. 20-34. · Zbl 1517.68345
[561] Shafer, G., A Mathematical Theory of Evidence, 1976, Princeton University Press: Princeton University Press Princeton, N.J. · Zbl 0359.62002
[562] Shafer, G.; Vovk, V., A tutorial on conformal prediction, J. Mach. Learn. Res., 9, 371-421, Mar 2008 · Zbl 1225.68215
[563] Shapiro, E., Inductive inference of theories from facts, (Lassez, J.-L.; Plotkin, G., Computational Logic: Essays in Honor of Alan Robinson, 1991, MIT Press), 199-254, 1981, Depart. Computer Sci., Yale Univ., Reprinted in
[564] Shavlik, J. W.; Dietterich, T. G., Readings in Machine Learning, 1990, Morgan Kaufmann
[565] Shen, J.; Qu, Y.; Zhang, W.; Yu, Y., Wasserstein distance guided representation learning for domain adaptation, 2017, arXiv preprint
[566] Shenoy, P. P., Conditional independence in valuation-based systems, Int. J. Approx. Reason., 10, 3, 203-234, 1994 · Zbl 0821.68114
[567] A. Shih, A. Choi, A. Darwiche, A symbolic approach to explaining bayesian network classifiers, in: Lang [390], pp. 5103-5111.
[568] Simonyan, K.; Vedaldi, A.; Zisserman, A., Deep inside convolutional networks: visualising image classification models and saliency maps, (Bengio, Y.; LeCun, Y., Proc. 2nd Int. Conf. on Learning Representations, ICLR 2014. Proc. 2nd Int. Conf. on Learning Representations, ICLR 2014, Banff, Apr. 14-16, 2014, Workshop Track), 14-16
[569] G. Singh, T. Gehr, M. Mirman, M. Püschel, M.T. Vechev, Fast and effective robustness certification, in: Bengio et al. [59], pp. 10825-10836.
[570] Singh, G.; Gehr, T.; Püschel, M.; Vechev, M. T., An abstract domain for certifying neural networks, Proc. ACM Program. Lang., 41, 1, 2019, (POPL)
[571] Singh, G.; Gehr, T.; Püschel, M.; Vechev, M. T., Boosting robustness certification of neural networks, (Proc. 7th Int. Conf. on Learning Representations (ICLR’19). Proc. 7th Int. Conf. on Learning Representations (ICLR’19), New Orleans, May 6-9, 2019, OpenReview.net)
[572] Singh, R.; Near, J. P.; Ganesh, V.; Rinard, M., AvatarSAT: an auto-tuning Boolean SAT solver, 2009, MIT, Technical Report MIT-CSAIL-TR-2009-039
[573] Sixt, L.; Granz, M.; Landgraf, T., When explanations lie: why many modified BP attributions fail, (Proc 37th Int. Conf. on Machine Learning, 2020)
[574] Skowron, A.; Nguyen, H. S., Boolean reasoning scheme with some applications in data mining, (Zytkow, J. M.; Rauch, J., Proc. 3rd Europ. Conf. on Principles of Data Mining and Knowledge Discovery, (PKDD’99). Proc. 3rd Europ. Conf. on Principles of Data Mining and Knowledge Discovery, (PKDD’99), Prague, Sept. 15-18. Proc. 3rd Europ. Conf. on Principles of Data Mining and Knowledge Discovery, (PKDD’99). Proc. 3rd Europ. Conf. on Principles of Data Mining and Knowledge Discovery, (PKDD’99), Prague, Sept. 15-18, LNCS, vol. 1704, 1999, Springer), 107-115
[575] Slack, D.; Hilgard, S.; Jia, E.; Singh, S.; Lakkaraju, H., Fooling lime and shap: adversarial attacks on post hoc explanation methods, (Proc. of the AAAI/ACM Conf. on AI, Ethics, and Society, 2020), 180-186
[576] Smilkov, D.; Thorat, N.; Kim, B.; Viégas, F.; Wattenberg, M., SmoothGrad: removing noise by adding noise, 2017
[577] Socher, R.; Chen, D.; Manning, C. D.; Ng, A. Y., Reasoning with neural tensor networks for knowledge base completion, (Burges, C. J.C.; Bottou, L.; Ghahramani, Z.; Weinberger, K. Q., Proc. of the 27th Annual Conf. on Neural Information Processing Systems (NIPS’13), 2013), 926-934
[578] Sourek, G.; Aschenbrenner, V.; Zelezný, F.; Schockaert, S.; Kuzelka, O., Lifted relational neural networks: efficient learning of latent relational structures, J. Artif. Intell. Res., 62, 69-100, 2018 · Zbl 1444.68163
[579] Sowa, J. F., Conceptual Structures: Information Processing in Mind and Machine, 1984, Addison-Wesley · Zbl 0536.68077
[580] Srinivasan, R.; Chander, A., Biases in AI systems, Commun. ACM, 64, 8, 44-49, 2021
[581] Srinivasan, S.; Dickens, C.; Augustine, E.; Farnadi, G.; Getoor, L., A taxonomy of weight learning methods for statistical relational learning, Mach. Learn., 111, 8, 2799-2838, 2022 · Zbl 07624256
[582] Strauss, O.; Rico, A., Macsum aggregation learning and missing values, (Bouraoui, Z.; Vesic, S., Proc. 17th Europ. Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’23). Proc. 17th Europ. Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’23), Arras, Sept. 19-22, 2023. Proc. 17th Europ. Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’23). Proc. 17th Europ. Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’23), Arras, Sept. 19-22, 2023, LNCS, vol. 14294, 2024, Springer), 453-463
[583] Strauss, O.; Rico, A.; Hmidy, Y., Macsum: a new interval-valued linear operator, Int. J. Approx. Reason., 145, 121-138, 2022 · Zbl 1524.68379
[584] Stroppa, N.; Yvon, F., Analogical learning and formal proportions: Definitions and methodological issues, 2005, Technical Report D004, ENST-Paris
[585] Sundararajan, M.; Taly, A.; Yan, Q., Axiomatic Attribution for Deep Networks, 2017
[586] Svatos, M.; Schockaert, S.; Davis, J.; Strike, O. Kuzelka, Rule-driven relational learning using stratified k-entailment, (Giacomo, G. D.; Catalá, A.; Dilkina, B.; Milano, M.; Barro, S.; Bugarín, A.; Lang, J., Proc. 24th Europ. Conf. on Artificial Intelligence (ECAI’20). Proc. 24th Europ. Conf. on Artificial Intelligence (ECAI’20), Santiago de Compostela, 29 Aug. - 8 Sept.. Proc. 24th Europ. Conf. on Artificial Intelligence (ECAI’20). Proc. 24th Europ. Conf. on Artificial Intelligence (ECAI’20), Santiago de Compostela, 29 Aug. - 8 Sept., Frontiers in Artificial Intelligence and Applications, vol. 325, 2020, IOS Press), 1515-1522
[587] Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I. J.; Fergus, R., Intriguing properties of neural networks, (Bengio, Y.; LeCun, Y., Proc. 2nd Int. Conf. on Learning Representations (ICLR’14). Proc. 2nd Int. Conf. on Learning Representations (ICLR’14), Banff, April 14-16, 2014)
[588] Takagi, T.; Sugeno, M., Fuzzy identification of systems and its application to modelling and control, IEEE Trans. Syst. Man Cybern., 15, 1, 11-132, 1985 · Zbl 0576.93021
[589] G. Tao, S. Ma, Y. Liu, X. Zhang, Attacks meet interpretability: Attribute-steered detection of adversarial samples, in: Bengio et al. [59], pp. 7728-7739.
[590] Thagard, P. R., The best explanation: criteria for theory choice, J. Philos., 75, 2, 76-92, 1978
[591] Tibshirani, R., Regression shrinkage and selection via the lasso, J. R. Stat. Soc., Ser. B, Methodol., 58, 1, 267-288, 1996 · Zbl 0850.62538
[592] Tiddi, I.; Schlobach, S., Knowledge graphs as tools for explainable machine learning: a survey, Artif. Intell., 302, Article 103627 pp., 2022 · Zbl 1478.68369
[593] Tomsett, R.; Widdicombe, A.; Xing, T.; Chakraborty, S.; Julier, S.; Gurram, P.; Rao, R. M.; Srivastava, M. B., Why the failure? How adversarial examples can provide insights for interpretable machine learning, (Proc. 21st Int. Conf. on Information Fusion (FUSION’18). Proc. 21st Int. Conf. on Information Fusion (FUSION’18), Cambridge, UK, July 10-13, 2018, IEEE), 838-845
[594] Tong, Z.; Xu, P.; Denœux, T., An evidential classifier based on Dempster-Shafer theory and deep learning, Neurocomputing, 450, 275-293, 2021
[595] Tong, Z.; Xu, P.; Denœux, T., Evidential fully convolutional network for semantic segmentation, Appl. Intell., 51, 6376-6399, 2021
[596] Toutanova, K.; Chen, D.; Pantel, P.; Poon, H.; Choudhury, P.; Gamon, M., Representing text for joint embedding of text and knowledge bases, (Proc. of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP’15). Proc. of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP’15), Lisbon, Sept. 17-21, 2015), 1499-1509
[597] Towell, G. G.; Shavlik, J. W., Extracting refined rules from knowledge-based neural networks, Mach. Learn., 13, 71-101, 1993
[598] Towell, G. G.; Shavlik, J. W., Knowledge-based artificial neural networks, Artif. Intell., 70, 1-2, 119-165, 1994 · Zbl 0938.68774
[599] Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; Bouchard, G., Complex embeddings for simple link prediction, (Int. Conf. on Machine Learning, 2016), 2071-2080
[600] Tsouros, D. C.; Berden, S.; Guns, T., Guided bottom-up interactive constraint acquisition, (Yap, R. H.C., Proc. 29th Int. Conf. on Principles and Practice of Constraint Programming (CP’23). Proc. 29th Int. Conf. on Principles and Practice of Constraint Programming (CP’23), Aug. 27-31, Toronto. Proc. 29th Int. Conf. on Principles and Practice of Constraint Programming (CP’23). Proc. 29th Int. Conf. on Principles and Practice of Constraint Programming (CP’23), Aug. 27-31, Toronto, LIPIcs, vol. 280, 2023, Schloss Dagstuhl - Leibniz-Zentrum für Informatik), Article 36 pp.
[601] Tsouros, D. C.; Berden, S.; Guns, T., Learning to learn in interactive constraint acquisition, (Wooldridge, M. J.; Dy, J. G.; Natarajan, S., Proc. 38th AAAI Conf. on Artificial Intelligence, (AAAI’24). Proc. 38th AAAI Conf. on Artificial Intelligence, (AAAI’24), Vancouver, Feb. 20-27, 2024, AAAI Press), 8154-8162
[602] Tsouros, D. C.; Stergiou, K.; Bessiere, C., Structure-driven multiple constraint acquisition, (Schiex, T.; de Givry, S., Proc. 25th Int. Conf. on Principles and Practice of Constraint Programming (CP’19). Proc. 25th Int. Conf. on Principles and Practice of Constraint Programming (CP’19), Stamford, CT, Sept. 30 - Oct. 4. Proc. 25th Int. Conf. on Principles and Practice of Constraint Programming (CP’19). Proc. 25th Int. Conf. on Principles and Practice of Constraint Programming (CP’19), Stamford, CT, Sept. 30 - Oct. 4, LNCS, vol. 11802, 2019, Springer), 709-725
[603] Tsouros, D. C.; Stergiou, K.; Bessiere, C., Omissions in constraint acquisition, (Simonis, H., Proc. 26th Int. Conf. on Principles and Practice of Constraint Programming (CP’20). Proc. 26th Int. Conf. on Principles and Practice of Constraint Programming (CP’20), Louvain-la-Neuve, Sept. 7-11. Proc. 26th Int. Conf. on Principles and Practice of Constraint Programming (CP’20). Proc. 26th Int. Conf. on Principles and Practice of Constraint Programming (CP’20), Louvain-la-Neuve, Sept. 7-11, LNCS, vol. 12333, 2020, Springer), 935-951
[604] Tsouros, D. C.; Stergiou, K.; Sarigiannidis, P. G., Efficient methods for constraint acquisition, (Hooker, J. N., Proc. 24th Int. Conf. Principles and Practice of Constraint Programming (CP’18). Proc. 24th Int. Conf. Principles and Practice of Constraint Programming (CP’18), Lille, Aug. 27-31. Proc. 24th Int. Conf. Principles and Practice of Constraint Programming (CP’18). Proc. 24th Int. Conf. Principles and Practice of Constraint Programming (CP’18), Lille, Aug. 27-31, LNCS, vol. 11008, 2018, Springer), 373-388
[605] Urban, J.; Vyskocil, J.; Stepánek, P., MaLeCoP machine learning connection prover, (Brünnler, K.; Metcalfe, G., Proc. 20th Int. Conf. on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX’11). Proc. 20th Int. Conf. on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX’11), Bern, July 4-8. Proc. 20th Int. Conf. on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX’11). Proc. 20th Int. Conf. on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX’11), Bern, July 4-8, LNCS, vol. 6793, 2011, Springer), 263-277 · Zbl 1332.68206
[606] Valiant, L. G., A theory of the learnable, Commun. ACM, 27, 11, 1134-1142, 1984 · Zbl 0587.68077
[607] Vapnik, V., The Nature of Statistical Learning Theory, 2013, Springer
[608] Vapnik, V. N.; Chervonenkis, A. Y., On the uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Appl., 16, 2, 264-280, 1971 · Zbl 0247.60005
[609] Venkateswara, H.; Chakraborty, S.; Panchanathan, S., Deep-learning systems for domain adaptation in computer vision: learning transferable feature representations, IEEE Signal Process. Mag., 34, 6, 117-129, 2017
[610] Verhaeghe, H.; Nijssen, S.; Pesant, G.; Quimper, C.-G.; Schaus, P., Learning optimal decision trees using constraint programming, Constraints, 2019
[611] Verma, S.; Dickerson, J. P.; Hines, K., Counterfactual explanations for machine learning: a review, 2020, CoRR
[612] Verwer, S.; Zhang, Y., Learning decision trees with flexible constraints and objectives using integer optimization, (Salvagnin, D.; Lombardi, M., Proc. 14th Int. Conf. on Integration of AI and OR Techniques in Constraint Programming (CPAIOR’17). Proc. 14th Int. Conf. on Integration of AI and OR Techniques in Constraint Programming (CPAIOR’17), Padua, June 5-8. Proc. 14th Int. Conf. on Integration of AI and OR Techniques in Constraint Programming (CPAIOR’17). Proc. 14th Int. Conf. on Integration of AI and OR Techniques in Constraint Programming (CPAIOR’17), Padua, June 5-8, LNCS, vol. 10335, 2017, Springer), 94-103 · Zbl 1489.68259
[613] S. Verwer, Y. Zhang, Learning optimal classification trees using a binary linear program formulation, in: Proc. 33rd AAAI Conf. on Artificial Intelligence (AAAI’19), Honolulu, Jan. 27 - Feb. 1, pp. 1625-1632.
[614] Vilnis, L.; McCallum, A., Word representations via Gaussian embedding, (Proc. 3rd Int. Conf. on Learning Representations. Proc. 3rd Int. Conf. on Learning Representations, San Diego, May 7-9, 2015)
[615] Vinyals, O.; Fortunato, M.; Jaitly, N., Pointer networks, (Cortes, C.; Lawrence, N. D.; Lee, D. D.; Sugiyama, M.; Garnett, R., Advances in Neural Information Processing Systems 28: Annual Conf. on Neural Information Processing Systems. Advances in Neural Information Processing Systems 28: Annual Conf. on Neural Information Processing Systems, Dec. 7-12, Montreal, 2015), 2692-2700
[616] von Wright, G. H., Norm and Action, 1963, Routledge and Keagan
[617] Wachter, S.; Mittelstadt, B.; Russell, C., Counterfactual explanations without opening the black box: automated decisions and the GDPR, Harv. J. Law Technol., 31, 841-887, 2018
[618] Walley, P.; Moral, S., Upper probabilities based only on the likelihood function, J. R. Stat. Soc., Ser. B, Stat. Methodol., 61, 4, 831-847, 1999 · Zbl 0940.62004
[619] Wang, C.; Bunel, R.; Dvijotham, K.; Huang, P.; Grefenstette, E.; Kohli, P., Knowing when to stop: evaluation and verification of conformity to output-size specifications, (Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’19). Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’19), Long Beach, June 16-20, 2019, Computer Vision Foundation/IEEE), 12260-12269
[620] Wang, H.; Zhang, F.; Xie, X.; Guo, M., DKN: deep knowledge-aware network for news recommendation, (Champin, P.; Gandon, F.; Lalmas, M.; Ipeirotis, P. G., Proc. of the 2018 World Wide Web Conf. on World Wide Web, WWW 2018. Proc. of the 2018 World Wide Web Conf. on World Wide Web, WWW 2018, Lyon, April 23-27, 2018, 2018, ACM), 1835-1844
[621] M. Wang, Y. Tang, J. Wang, J. Deng, Premise selection for theorem proving by deep graph embedding, in: Guyon et al. [293], pp. 2786-2796.
[622] Wang, P.; Donti, P. L.; Wilder, B.; Kolter, J. Z., SATNet: bridging deep learning and logical reasoning using a differentiable satisfiability solver, (Proc 36th Int. Conf. on Machine Learning (ICML’19). Proc 36th Int. Conf. on Machine Learning (ICML’19), Long Beach, June 9-15, 2019), 6545-6554
[623] Wang, P.; Vasconcelos, N., SCOUT: Self-aware discriminant counterfactual explanations, (The IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). The IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), Seattle, June 13-19, 2020), 8978-8987
[624] Wang, X.; Gao, T.; Zhu, Z.; Zhang, Z.; Liu, Z.; Li, J.; Tang, J., KEPLER: a unified model for knowledge embedding and pre-trained language representation, Trans. Assoc. Comput. Linguist., 9, 176-194, 2021
[625] Wang, X.; He, X.; Cao, Y.; Liu, M.; Chua, T., KGAT: knowledge graph attention network for recommendation, (Teredesai, A.; Kumar, V.; Li, Y.; Rosales, R.; Terzi, E.; Karypis, G., Proc. 25th ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining (KDD’19). Proc. 25th ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining (KDD’19), Anchorage, Aug. 4-8, 2019, ACM), 950-958
[626] Wang, X.; Wang, D.; Xu, C.; He, X.; Cao, Y.; Chua, T., Explainable reasoning over knowledge graphs for recommendation, (Proc. 33rd AAAI Conf. on Artificial Intelligence (AAAI’19). Proc. 33rd AAAI Conf. on Artificial Intelligence (AAAI’19), Honolulu, Jan. 27 - Feb. 1, 2019, AAAI Press), 5329-5336
[627] Webb, S.; Rainforth, T.; Teh, Y. W.; Kumar, M. P., A statistical approach to assessing neural network robustness, (Proc. 7th Int. Conf. on Learning Representations (ICLR’19). Proc. 7th Int. Conf. on Learning Representations (ICLR’19), New Orleans, May 6-9, 2019, OpenReview.net)
[628] Weller, A., Transparency: motivations and challenges, (Samek, W.; Montavon, G.; Vedaldi, A.; Hansen, L. K.; Klaus-Robert, M., Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, LNCS, vol. 11700, 2019, Springer), 23-40
[629] Wen, W.; Callahan, J.; Napolitano, M., Towards developing verifiable neural network controller, 1996, Depart. of Aerospace Engineering, NASA/WVU Software Research Lab., Research report, Workshop on AI for Aeronautics and Space
[630] West, P.; Bhagavatula, C.; Hessel, J.; Hwang, J.; Jiang, L.; Le Bras, R.; Lu, X.; Welleck, S.; Choi, Y., Symbolic knowledge distillation: from general language models to commonsense models, (Carpuat, M.; de Marneffe, M.-C.; Meza Ruiz, I. V., Proc. 2022 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, July 2022, Association for Computational Linguistics: Association for Computational Linguistics Seattle), 4602-4625
[631] Whalen, D., Holophrasm: a neural automated theorem prover for higher-order logic, 2016, CoRR
[632] Wilson, N., An efficient upper approximation for conditional preference, (Brewka, G.; Coradeschi, S.; Perini, A.; Traverso, P., Proc. of the 17th Europ. Conf. on Artificial Intelligence (ECAI’06), Frontiers in Artificial Intelligence and Applications, 2006, IOS Press)
[633] Wilson, N., Efficient inference for expressive comparative preference language, (Boutilier, C., Proc. 21st Int. Joint Conf. on Artificial Intelligence (IJCAI’09), 2009), 961-966
[634] Wilson, N., Preference inference based on lexicographic models, (Schaub, T.; Friedrich, G.; O’Sullivan, B., Proc. 21st Europ. Conf. on Artificial Intelligence (ECAI14). Proc. 21st Europ. Conf. on Artificial Intelligence (ECAI14), Frontiers in Artificial Intelligence and Applications, vol. 263, 2014, IOS Press), 921-926 · Zbl 1366.68356
[635] Wu, L.; Zheng, Z.; Qiu, Z.; Wang, H.; Gu, H.; Shen, T.; Qin, C.; Zhu, C.; Zhu, H.; Liu, Q., A survey on large language models for recommendation, 2023, arXiv preprint
[636] Wu, M.; Wu, H.; Verix, C. W. Barrett, Towards verified explainability of deep neural networks, (Oh, A.; Naumann, T.; Globerson, A.; Saenko, K.; Hardt, M.; Levine, S., Advances in Neural Information Processing Systems 36: Annual Conf. on Neural Information Processing Systems 2023, NeurIPS 2023. Advances in Neural Information Processing Systems 36: Annual Conf. on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, Dec. 10-16, 2023)
[637] Xiao, H.; Huang, M.; Meng, L.; Zhu, X., SSP: semantic space projection for knowledge graph embedding with text descriptions, (Singh, S.; Markovitch, S., Proc. of the 31st AAAI Conf. on Artificial Intelligence. Proc. of the 31st AAAI Conf. on Artificial Intelligence, Feb. 4-9, San Francisco, 2017), 3104-3110
[638] Xie, R.; Liu, Z.; Jia, J.; Luan, H.; Sun, M., Representation learning of knowledge graphs with entity descriptions, (Proc. 30th AAAI Conf. on Artificial Intelligence (AAAI’16). Proc. 30th AAAI Conf. on Artificial Intelligence (AAAI’16), Phoenix, Feb. 12-17, 2016), 2659-2665
[639] Xie, Y.; Xu, Z.; Meel, K.; Kankanhalli, M. S.; Soh, H., Semantically-regularized logic graph embeddings, 2019, CoRR
[640] Xie, Y.; Xu, Z.; Meel, K. S.; Kankanhalli, M. S.; Soh, H., Embedding symbolic knowledge into deep networks, (Wallach, H. M.; Larochelle, H.; Beygelzimer, A.; d’Alché-Buc, F.; Fox, E. B.; Garnett, R., Advances in Neural Information Processing Systems 32: Annual Conf. on Neural Information Processing Systems. Advances in Neural Information Processing Systems 32: Annual Conf. on Neural Information Processing Systems, Vancouver, Dec. 8-14, 2019), 4235-4245
[641] Xu, F.; Uszkoreit, H.; Du, Y.; Fan, W.; Zhao, D.; Zhu, J., Explainable AI: a brief survey on history, research areas, approaches and challenges, (Tang, J.; Kan, M. Y.; Zhao, D.; Li, S.; Zan, H., Natural Language Processing and Chinese Computing (NLPCC’19). Natural Language Processing and Chinese Computing (NLPCC’19), LNCS, vol. 11839, 2019, Springer), 563-574
[642] H. Xu, S. Koenig, T.K.S. Kumar, Towards effective deep learning for constraint satisfaction problems, in: Hooker [317], pp. 588-597.
[643] Xu, J.; Zhang, Z.; Friedman, T.; Liang, Y.; den Broeck, G. V., A semantic loss function for deep learning with symbolic knowledge, (Proc. 35th Int. Conf. on Machine Learning, 2018), 5498-5507
[644] Xu, K.; Liu, S.; Zhao, P.; Chen, P.; Zhang, H.; Erdogmus, D.; Wang, Y.; Lin, X., Structured adversarial attack: towards general implementation and better interpretability, 2018, CoRR
[645] Xu, L.; Hutter, F.; Hoos, H. H.; Leyton-Brown, K., SATzilla: portfolio-based algorithm selection for SAT, J. Artif. Intell. Res., 32, 565-606, 2008 · Zbl 1182.68272
[646] Xu, L.; Krzyzak, A.; Suen, C. Y., Methods of combining multiple classifiers and their applications to handwriting recognition, IEEE Trans. Syst. Man Cybern., 22, 3, 418-435, 1992
[647] Xu, P.; Davoine, F.; Zha, H.; Denœux, T., Evidential calibration of binary SVM classifiers, Int. J. Approx. Reason., 72, 55-70, 2016 · Zbl 1352.68208
[648] Yaghlane, B. B.; Mellouli, K., Inference in directed evidential networks based on the transferable belief model, Int. J. Approx. Reason., 48, 2, 399-418, 2008 · Zbl 1185.68700
[649] F. Yang, Z. Yang, W.W. Cohen, Differentiable learning of logical rules for knowledge base reasoning, in: Guyon et al. [293], pp. 2319-2328.
[650] Yang, K.; Deng, J., Learning to prove theorems via interacting with proof assistants, (Chaudhuri, K.; Salakhutdinov, R., Proc 36th Int. Conf. on Machine Learning (ICML’19). Proc 36th Int. Conf. on Machine Learning (ICML’19), Long Beach, June 9-15. Proc 36th Int. Conf. on Machine Learning (ICML’19). Proc 36th Int. Conf. on Machine Learning (ICML’19), Long Beach, June 9-15, Proc. of Machine Learning Research, vol. 97, 2019, PMLR), 6984-6994
[651] Yang, Z.; Wang, F.; Chen, Z.; Wei, G.; Rompf, T., Graph neural reasoning for 2-quantified Boolean formula solvers, 2019, CoRR
[652] Yao, Y., Three-way granular computing, rough sets, and formal concept analysis, Int. J. Approx. Reason., 116, 106-125, 2020 · Zbl 1468.68246
[653] Yasunaga, M.; Ren, H.; Bosselut, A.; Liang, P.; Leskovec, J., QA-GNN: reasoning with language models and knowledge graphs for question answering, (Toutanova, K.; Rumshisky, A.; Zettlemoyer, L.; Hakkani-Tur, D.; Beltagy, I.; Bethard, S.; Cotterell, R.; Chakraborty, T.; Zhou, Y., Proc. 2021 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021, Association for Computational Linguistics), 535-546
[654] Yoon, K.; Liao, R.; Xiong, Y.; Zhang, L.; Fetaya, E.; Urtasun, R.; Zemel, R. S.; Pitkow, X., Inference in probabilistic graphical models by graph neural networks, (Proc. 53rd Asilomar Conf. on Signals, Systems, and Computers, 2018), 868-875
[655] Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H., How transferable are features in deep neural networks?, Adv. Neural Inf. Process. Syst., 27, 2014
[656] Yuksekgonul, M.; Wang, M.; Zou, J., Post-hoc concept bottleneck models, (The 11th Int. Conf. on Learning Representations, 2022)
[657] Zadeh, L. A., Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. Syst. Man Cybern., 3, 1, 28-44, 1973 · Zbl 0273.93002
[658] Zadeh, L. A., A theory of approximate reasoning, (Hayes, J. E.; Mitchie, D.; Mikulich, L. L., Machine Intelligence, vol. 9, 1979, Ellis Horwood), 149-194
[659] Zadeh, L. A., The calculus of fuzzy if-then rules, AI Expert, 7, 3, 22-27, 1992
[660] Zafar, M. B.; Valera, I.; Gomez Rodriguez, M.; Gummadi, K. P., Fairness beyond disparate treatment & disparate impact: learning classification without disparate mistreatment, (Proc. 26th Int. Conf. on World Wide Web (WWW’17). Proc. 26th Int. Conf. on World Wide Web (WWW’17), Perth, April 3-7, 2017), 1171-1180
[661] Zaffalon, M.; Antonucci, A.; Cabañas, R.; Huber, D.; Azzimonti, D., Efficient computation of counterfactual bounds, Int. J. Approx. Reason., 2024, this issue: 109111 · Zbl 07885913
[662] Zakrzewski, R. R., Verification of a trained neural network accuracy, (Int. Joint Conf. on Neural Networks (IJCNN), 2001, IEEE), 1657-1662
[663] Zelezný, F.; Lavrac, N., Propositionalization-based relational subgroup discovery with rsd, Mach. Learn., 62, 1-2, 33-63, 2006 · Zbl 1470.68209
[664] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, C. Dwork, Learning fair representations, in: S. Dasgupta, D. McAllester (Eds.), Proc. 30th Int. Conf. on Machine Learning, in: Proc. of Machine Learning Research, vol. 28 (3) Atlanta, 17-19 Jun 2013, PMLRv, pp. 325-333.
[665] Zhang, F.; Yuan, N. J.; Lian, D.; Xie, X.; Ma, W., Collaborative knowledge base embedding for recommender systems, (Krishnapuram, B.; Shah, M.; Smola, A. J.; Aggarwal, C. C.; Shen, D.; Rastogi, R., Pro. 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining. Pro. 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, San Francisco, Aug. 13-17, 2016, ACM), 353-362
[666] Zhang, H.; Zhan, T.; Basu, S.; Davidson, I., A framework for deep constrained clustering, Data Min. Knowl. Discov., 35, 2, 593-620, 2021 · Zbl 1473.68182
[667] L. Zhang, G. Rosenblatt, E. Fetaya, R. Liao, W.E. Byrd, M. Might, R. Urtasun, R.S. Zemel, Neural guided constraint logic programming for program synthesis, in: Bengio et al. [59], pp. 1744-1753.
[668] Zhang, L.; Rosenblatt, G.; Fetaya, E.; Liao, R.; Byrd, W. E.; Urtasun, R.; Zemel, R. S., Leveraging constraint logic programming for neural guided program synthesis, (Proc. 6th Int. Conf. on Learning Representations (ICLR’18). Proc. 6th Int. Conf. on Learning Representations (ICLR’18), Vancouver, Apr. 30 - May 3, 2018, OpenReview.net)
[669] Zhang, X.; Bosselut, A.; Yasunaga, M.; Ren, H.; Liang, P.; Manning, C. D.; Greaselm, J. Leskovec, Graph reasoning enhanced language models, (Proc. 10th Int. Conf. on Learning Representations (ICLR’22), Virtual Event. Proc. 10th Int. Conf. on Learning Representations (ICLR’22), Virtual Event, Apr. 25-29, 2022, OpenReview.net)
[670] Zhang, Z.; Han, X.; Liu, Z.; Jiang, X.; Sun, M.; Liu, Q., ERNIE: enhanced language representation with informative entities, (Korhonen, A.; Traum, D.; Màrquez, L., Proc. of the 57th Annual Meeting of the Association for Computational Linguistics, July 2019, Association for Computational Linguistics: Association for Computational Linguistics Florence), 1441-1451
[671] Zhong, H.; Zhang, J.; Wang, Z.; Wan, H.; Chen, Z., Aligning knowledge and text embeddings by entity descriptions, (Màrquez, L.; Callison-Burch, C.; Su, J.; Pighin, D.; Marton, Y., Proc. of the 2015 Conf. on Empirical Methods in Natural Language Processing (EMNLP’15). Proc. of the 2015 Conf. on Empirical Methods in Natural Language Processing (EMNLP’15), Lisbon, Sept. 17-21, 2015), 267-272
[672] Zhou, Z., Abductive learning: towards bridging machine learning and logical reasoning, Sci. China Inf. Sci., 62, 7, 76101:1-76101:3, 2019
[673] Zhu, H.; Xiong, Z.; Magill, S.; Jagannathan, S., An inductive synthesis framework for verifiable reinforcement learning, (McKinley, K. S.; Fisher, K., Proc. 40th ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI’19). Proc. 40th ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI’19), Phoenix, June 22-26, 2019, ACM), 686-701
[674] Yang, Z.; Ishay, A.; Neurasp, J. L., Embracing neural networks into answer set programming, (Bessiere, C., Proc. 29th Int. Joint Conf. on Artificial Intelligence (IJCAI’20), 2020), 1755-1762
[675] Zouhal, L. M.; Denœux, T., An evidence-theoretic k-NN rule with parameter optimization, IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev., 28, 2, 263-271, 1998
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.