×

Resolvents for fractional-order operators with nonhomogeneous local boundary conditions. (English) Zbl 1509.35399

Summary: For \(2a\)-order strongly elliptic operators \(P\) generalizing \(( - \Delta )^a\), \(0 < a < 1\), the homogeneous Dirichlet problem on a bounded open set \(\Omega \subset \mathbb{R}^n\) has been widely studied. Pseudodifferential methods have been applied by the present author when \(\Omega\) is smooth; this is extended in a recent joint work with Helmut Abels showing exact regularity theorems in the scale of \(L_q\)-Sobolev spaces \(H_q^s\) for \(1 < q < \infty \), when \(\Omega\) is \(C^{\tau + 1}\) with a finite \(\tau > 2 a\). We now develop this into existence-and-uniqueness theorems (or Fredholm theorems), by a study of the \(L_p\)-Dirichlet realizations of \(P\) and \(P^\ast \), showing that there are finite-dimensional kernels and cokernels lying in \(d^a C^\alpha( \overline{\Omega})\) with suitable \(\alpha > 0\), \(d(x) = \operatorname{dist}(x, \partial \Omega)\). Similar results are established for \(P - \lambda I\), \(\lambda \in \mathbb{C} \). The solution spaces equal \(a\)-transmission spaces \(H_q^{a ( t )}( \overline{\Omega})\).
Moreover, the results are extended to nonhomogeneous Dirichlet problems prescribing the local Dirichlet trace \((u / d^{a - 1}) |_{\partial \Omega} \). They are solvable in the larger spaces \(H_q^{( a - 1 ) ( t )}( \overline{\Omega})\). Furthermore, the nonhomogeneous problem with a spectral parameter \(\lambda \in \mathbb{C}\), \[ P u - \lambda u = f \text{ in } \Omega, \quad u = 0 \text{ in } \mathbb{R}^n \setminus \Omega, \quad( u / d^{a - 1} ) |_{\partial \Omega} = \varphi \text{ on } \partial \Omega, \] is for \(q < ( 1 - a )^{- 1}\) shown to be uniquely resp. Fredholm solvable when \(\lambda\) is in the resolvent set resp. the spectrum of the \(L_2\)-Dirichlet realization. The results open up for applications of functional analysis methods. Here we establish solvability results for evolution problems with a time-parameter \(t\), both in the case of the homogeneous Dirichlet condition, and the case where a nonhomogeneous Dirichlet trace \((u(x, t) / d^{a - 1}(x)) |_{x \in \partial \Omega}\) is prescribed.

MSC:

35S15 Boundary value problems for PDEs with pseudodifferential operators
35J25 Boundary value problems for second-order elliptic equations
35R11 Fractional partial differential equations
35K20 Initial-boundary value problems for second-order parabolic equations
47G30 Pseudodifferential operators
60G51 Processes with independent increments; Lévy processes

References:

[1] Abatangelo, N., Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian, Discrete Contin. Dyn. Syst., 35, 5555-5607 (2015) · Zbl 1333.31013
[2] Abels, H.; Grubb, G., Fractional-order operators on nonsmooth domains, The paper has been accepted and is being published by J. Lond. Math. Soc. · Zbl 1521.35064
[3] Amann, H., Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr., 186, 5-56 (1997) · Zbl 0880.42007
[4] Bogdan, K.; Burdzy, K.; Chen, Z.-Q., Censored stable processes, Probab. Theory Relat. Fields, 127, 89-152 (2003) · Zbl 1032.60047
[5] Boutet de Monvel, L., Boundary problems for pseudo-differential operators, Acta Math., 126, 11-51 (1971) · Zbl 0206.39401
[6] Chan, H.; Gomez-Castro, D.; Vazquez, J. L., Blow-up phenomena in nonlocal eigenvalue problems: when theories of \(L^1\) and \(L^2\) meet, J. Funct. Anal., 280, 7, 68 (2021) · Zbl 1458.35070
[7] Chen, Z.-Q.; Song, R., Two-sided eigenvalue estimates for subordinate processes in domains, J. Funct. Anal., 226, 90-113 (2005) · Zbl 1081.60056
[8] Davies, E. B., Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, vol. 92 (1989), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0699.35006
[9] Denk, R.; Seiler, J., Maximal \(L_p\)-regularity of non-local boundary value problems, Monatshefte Math., 176, 53-80 (2015) · Zbl 1317.35105
[10] Dyda, B.; Kuznetsov, A.; Kwasnicki, M., Eigenvalues of the fractional Laplace operator in the unit ball, J. Lond. Math. Soc. (2), 95, 500-518 (2017) · Zbl 1387.35431
[11] Fernandez-Real, X.; Ros-Oton, X., Regularity theory for general stable operators: parabolic equations, J. Funct. Anal., 272, 4165-4221 (2017) · Zbl 1372.35058
[12] Fukushima, M.; Oshima, Y.; Takeda, M., Dirichlet Forms and Symmetric Markov Processes, De Gruyter Studies in Mathematics, vol. 19 (1994), Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin · Zbl 0838.31001
[13] Grubb, G., Pseudo-differential boundary problems in \(L_p\)-spaces, Commun. Partial Differ. Equ., 13, 289-340 (1990) · Zbl 0723.35091
[14] Grubb, G., Functional Calculus of Pseudodifferential Boundary Problems, Progress in Math., vol. 65 (1996), Birkhäuser: Birkhäuser Boston, first edition issued 1986 · Zbl 0844.35002
[15] Grubb, G., Distributions and Operators, Graduate Texts in Mathematics, vol. 252 (2009), Springer: Springer New York · Zbl 1171.47001
[16] Grubb, G., Perturbation of essential spectra of exterior elliptic problems, Appl. Anal., 90, 103-123 (2011) · Zbl 1208.35094
[17] Grubb, G., Spectral asymptotics for nonsmooth singular Green operators, Commun. Partial Differ. Equ., 39, 530-573 (2014) · Zbl 1290.35057
[18] Grubb, G., Local and nonlocal boundary conditions for μ-transmission and fractional elliptic pseudodifferential operators, Anal. PDE, 7, 1649-1682 (2014) · Zbl 1317.35310
[19] Grubb, G., Fractional Laplacians on domains, a development of Hörmander’s theory of μ-transmission pseudodifferential operators, Adv. Math., 268, 478-528 (2015) · Zbl 1318.47064
[20] Grubb, G., Spectral results for mixed problems and fractional elliptic operators, J. Math. Anal. Appl., 421, 1616-1634 (2015) · Zbl 1302.35279
[21] Grubb, G., Green’s formula and a Dirichlet-to-Neumann operator for fractional-order pseudodifferential operators, Commun. Partial Differ. Equ., 43, 750-789 (2018) · Zbl 1409.35216
[22] Grubb, G., Regularity in \(L_p\) Sobolev spaces of solutions to fractional heat equations, J. Funct. Anal., 274, 2634-2660 (2018) · Zbl 1396.35022
[23] Grubb, G., Fractional-order operators: boundary problems, heat equations, (Rodino, L. G.; Toft, J., Springer Proceedings in Mathematics and Statistics: “Mathematical Analysis and Applications — Plenary Lectures, ISAAC 2017, Vaxjo Sweden” (2018), Springer: Springer Switzerland), 51-81 · Zbl 1414.35099
[24] Grubb, G., Limited regularity of solutions to fractional heat and Schrödinger equations, Discrete Contin. Dyn. Syst., 39, 3609-3634 (2019) · Zbl 1415.35142
[25] Grubb, G., The principal transmission condition, Math. Eng., 4, 4, 1-33 (2022) · Zbl 1496.35471
[26] Grubb, G., Weyl asymptotics for fractional-order Dirichlet realizations in nonsmooth cases · Zbl 1540.35485
[27] Grubb, G., Fourier methods for fractional-order operators, prepared for the Proceedings of the RIMS Symposium “Harmonic Analysis and Nonlinear Partial Differential equations”, July 11-13, 2022, in the RIMS Kokyuroku Bessatsu series
[28] Hille, E.; Phillips, R. S., Functional Analysis and Semi-Groups, American Mathematical Society Colloquium Publications, vol. 31 (1957), American Mathematical Society: American Mathematical Society Providence, R. I. · Zbl 0078.10004
[29] Hörmander, L., Linear Partial Differential Operators, Grundlehren 119 (1963), Springer Verlag: Springer Verlag New York, Berlin · Zbl 0108.09301
[30] Hörmander, L., Seminar notes on pseudo-differential operators and boundary problems, Lund University, Lectures at IAS Princeton 1965-66, available from
[31] Hörmander, L., The Analysis of Linear Partial Differential Operators, III (1985), Springer Verlag: Springer Verlag Berlin · Zbl 0601.35001
[32] Kato, T., Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, vol. 132 (1966), Springer-Verlag, New York, Inc.: Springer-Verlag, New York, Inc. New York · Zbl 0148.12601
[33] Lamberton, D., Équations d’évolution linéaires associées à des semi-groupes de contractions dans les espaces Lp, J. Funct. Anal., 72, 252-262 (1987) · Zbl 0621.47039
[34] Lions, J.-L.; Magenes, E., Problèmes aux limites non homogènes et applications. Vol. 1 et 2 (1968), Editions Dunod: Editions Dunod Paris · Zbl 0165.10801
[35] Marschall, J., Pseudo-differential operators with coefficients in Sobolev spaces, Trans. Am. Math. Soc., 307, 1, 355-361 (1988) · Zbl 0679.35088
[36] Ros-Oton, X., Nonlocal elliptic equations in bounded domains, Publ. Math. Pures Appl., 60, 3-26 (2016) · Zbl 1337.47112
[37] Ros-Oton, X.; Serra, J., The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal., 213, 587-628 (2014) · Zbl 1361.35199
[38] Ros-Oton, X.; Vivas, H., Higher-order boundary regularity estimates for nonlocal parabolic equations, Calc. Var. Partial Differ. Equ., 57, 5 (2018), Paper No. 111, 20 pp · Zbl 1447.35095
[39] Schechter, M., Principles of Functional Analysis, Graduate Studies in Mathematics, vol. 36 (2002), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0211.14501
[40] Servadei, R.; Valdinoci, E., A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12, 2445-2464 (2013) · Zbl 1302.35413
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.