×

The strong closing lemma and Hamiltonian pseudo-rotations. (English) Zbl 07924656

Summary: We prove a \(C^{\infty}\) closing lemma for a class of Hamiltonian diffeomorphisms which includes all pseudo-rotations of \(\mathbb{C} P^n\) as well as all Anosov-Katok pseudo-rotations. This implies, in particular, that the strong \(C^{\infty}\) closing property, as formulated by Irie, holds for this class of Hamiltonian diffeomorphisms.

MSC:

53D40 Symplectic aspects of Floer homology and cohomology
37C20 Generic properties, structural stability of dynamical systems
53D10 Contact manifolds (general theory)

References:

[1] S. Allais, On the Hofer-Zehnder conjecture on \(\mathbb{C} \text{P}^d\) via generating functions (with an appendix by Egor Shelukhin), arXiv: 2010.14172, 2020.
[2] D. V. Anosov and A. B. Katok, New examples of ergodic diffeomorphisms of smooth manifolds, Uspehi Mat. Nauk, 25 (1970), 173-174. · Zbl 0203.56502
[3] M. Asaoka and K. Irie, A \(C^{\operatorname{\infty}}\) closing lemma for Hamiltonian diffeomorphisms of closed surfaces, Geom. Funct. Anal., 26 (2016), 1245-1254. doi: 10.1007/s00039-016-0386-3. · Zbl 1408.37092 · doi:10.1007/s00039-016-0386-3
[4] A. Avila, B. Fayad, P. Le Calvez, D. Xu and Z. Zhang, On mixing diffeomorphisms of the disc, Invent. Math., 220 (2020), 673-714. doi: 10.1007/s00222-019-00937-7. · Zbl 1448.37052 · doi:10.1007/s00222-019-00937-7
[5] S. Bai and G. Xu, Arnold conjecture over integers, arXiv: 2209.08599, 2022.
[6] F. Béguin, S. Crovisier and F. Le Roux, Pseudo-rotations of the open annulus, Bull. Braz. Math. Soc. (N.S.), 37 (2006), 275-306. doi: 10.1007/s00574-006-0013-2. · Zbl 1105.37029 · doi:10.1007/s00574-006-0013-2
[7] F. Béguin, S. Crovisier, F. Le Roux and A. Patou, Pseudo-rotations of the closed annulus: Variation on a theorem of J. Kwapisz, Nonlinearity, 17 (2004), 1427-1453. doi: 10.1088/0951-7715/17/4/016. · Zbl 1077.37032 · doi:10.1088/0951-7715/17/4/016
[8] P. Biran, L. Polterovich and D. Salamon, Propagation in Hamiltonian dynamics and relative symplectic homology, Duke Math. J., 119 (2003), 65-118. doi: 10.1215/S0012-7094-03-11913-4. · Zbl 1034.53089 · doi:10.1215/S0012-7094-03-11913-4
[9] B. Bramham, Periodic approximations of irrational pseudo-rotations using pseudoholomorphic curves, Ann. of Math. (2), 181 (2015), 1033-1086. doi: 10.4007/annals.2015.181.3.4. · Zbl 1353.37090 · doi:10.4007/annals.2015.181.3.4
[10] B. Bramham, Pseudo-rotations with sufficiently Liouvillean rotation number are \(C^0\)-rigid, Invent. Math., 199 (2015), 561-580. doi: 10.1007/s00222-014-0525-0. · Zbl 1353.37007 · doi:10.1007/s00222-014-0525-0
[11] L. Buhovsky, V. Humilière and S. Seyfaddini, The action spectrum and \(C^0\) symplectic topology, Math. Ann., 380 (2021), 293-316. doi: 10.1007/s00208-021-02183-w. · Zbl 1471.53067 · doi:10.1007/s00208-021-02183-w
[12] J. Chaidez, I. Datta, R. Prasad and S. Tanny, Contact homology and the strong closing lemma for ellipsoids, arXiv: 2206.04738, 2022.
[13] E. Çineli, V. L. Ginzburg and B. Z. Gürel, Pseudo-rotations and holomorphic curves, Selecta Math. (N.S.), 26 (2020), Paper No. 78, 31 pp. doi: 10.1007/s00029-020-00609-y. · Zbl 1467.53091 · doi:10.1007/s00029-020-00609-y
[14] E. Çineli, V. L. Ginzburg and B. Z. Gürel, From pseudo-rotations to holomorphic curves via quantum Steenrod squares, Int. Math. Res. Not. IMRN, (2022), 2274-2297. doi: 10.1093/imrn/rnaa173. · doi:10.1093/imrn/rnaa173
[15] E. Çineli, V. L. Ginzburg and B. Z. Gürel, On the growth of the Floer barcode, J. Mod. Dyn., 20 (2024), 275-298. doi: 10.3934/jmd.2024007. · Zbl 07901426 · doi:10.3934/jmd.2024007
[16] D. Cristofaro-Gardiner, D. Pomerleano, R. Prasad and B. Zhang, A note on the existence of U-cyclic elements in periodic Floer homology, arXiv: 2110.13844, 2021.
[17] D. Cristofaro-Gardiner, R. Prasad and B. Zhang, Periodic Floer homology and the smooth closing lemma for area-preserving surface diffeomorphisms, arXiv: 2110.02925, 2021.
[18] O. Edtmair and M. Hutchings, PFHspectral invariants and \(C^{\operatorname{\infty}}\) closing lemmas, arXiv: 2110.02463, 2021.
[19] A. Fathi and M. R. Herman, Existence de difféomorphismes minimaux, in Dynamical Systems, Vol. I-Warsaw, Astérisque, 49 (1977), 37-59. · Zbl 0374.58010
[20] B. Fayad and A. Katok, Constructions in elliptic dynamics, Ergodic Theory Dynam. Systems, 24 (2004), 1477-1520. doi: 10.1017/S0143385703000798. · Zbl 1089.37012 · doi:10.1017/S0143385703000798
[21] B. Filippenko and K. Wehrheim, A polyfold proof of the Arnold conjecture, Selecta Math. (N.S.), 28 (2022), Paper No. 11, 73 pp. doi: 10.1007/s00029-021-00680-z. · Zbl 1497.53125 · doi:10.1007/s00029-021-00680-z
[22] J. W. Fish and H. Hofer, Feral curves and Minimal sets, Ann. of Math., 197 (2023), 533-738. doi: 10.4007/annals.2023.197.2.2. · Zbl 1517.70029 · doi:10.4007/annals.2023.197.2.2
[23] J. W. Fish and H. H. W. Hofer, Almost existence from the feral perspective and some questions, Ergodic Theory Dynam. Systems, 42 (2022), 792-834. doi: 10.1017/etds.2021.20. · Zbl 1487.32154 · doi:10.1017/etds.2021.20
[24] A. Floer, H. Hofer and D. Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J., 80 (1995), 251-292. doi: 10.1215/S0012-7094-95-08010-7. · Zbl 0846.58025 · doi:10.1215/S0012-7094-95-08010-7
[25] V. L. Ginzburg and B. Z. Gürel, Hamiltonian pseudo-rotations of projective spaces, Invent. Math., 214 (2018), 1081-1130. doi: 10.1007/s00222-018-0818-9. · Zbl 1447.53073 · doi:10.1007/s00222-018-0818-9
[26] V. L. Ginzburg and B. Z. Gürel, Pseudo-rotations vs. rotations, arXiv: 1812.05782, 2018.
[27] V. L. Ginzburg and B. Z. Gürel, Approximate identities and Lagrangian Poincaré recurrence, Arnold Math. J., 5 (2019), 5-14. doi: 10.1007/s40598-019-00097-9. · Zbl 1464.53107 · doi:10.1007/s40598-019-00097-9
[28] M.-R. Herman, Exemples de flots hamiltoniens dont aucune perturbation en topologie \(C^{\operatorname{\infty}}\) n’a d’orbites périodiques sur un ouvert de surfaces d’énergies, C. R. Acad. Sci. Paris Sér. I Math., 312 (1991), 989-994. · Zbl 0759.58016
[29] M.-R. Herman, Différentiabilité optimale et contre-exemples à la fermeture en topologie \(C^{\operatorname{\infty}}\) des orbites récurrentes de flots hamiltoniens, C. R. Acad. Sci. Paris Sér. I Math., 313 (1991), 49-51. · Zbl 0759.58017
[30] H. Hofer, K. Wysocki and E. Zehnder, Applications of polyfold theory Ⅰ: The polyfolds of Gromov-Witten theory, Mem. Amer. Math. Soc., 248 (2017), no.1179, v+218 pp. doi: 10.1090/memo/1179. · Zbl 1434.53095 · doi:10.1090/memo/1179
[31] K. Irie, Dense existence of periodic Reeb orbits and ECH spectral invariants, J. Mod. Dyn., 9 (2015), 357-363. doi: 10.3934/jmd.2015.9.357. · Zbl 1353.37125 · doi:10.3934/jmd.2015.9.357
[32] K. Irie, Strong closing property of contact forms and action selecting functors, J. Fixed Point Theory Appl., 26 (2024), Paper No. 15, 23 pp. doi: 10.1007/s11784-024-01102-1. · Zbl 1541.53101 · doi:10.1007/s11784-024-01102-1
[33] D. Joksimović and S. Seyfaddini, A Hölder type inequality for the \(C^0\) distance and Anosov-Katok pseudo-rotations, Int. Math. Res. Not. IMRN, (2024), 6303-6324. doi: 10.1093/imrn/rnad103. · doi:10.1093/imrn/rnad103
[34] Y. Karshon, Appendix (to D. McDuff and L. Polterovich), Invent. Math., 115 (1994), 431-434. doi: 10.1007/BF01231767. · Zbl 0833.53029 · doi:10.1007/BF01231767
[35] Y. Kawamoto, On \(C^0\)-continuity of the spectral norm for symplectically non-aspherical manifolds, Int. Math. Res. Not. IMRN., (2022), 17187-17230. doi: 10.1093/imrn/rnab206. · Zbl 1502.57018 · doi:10.1093/imrn/rnab206
[36] B. Kolev and M.-C. Pérouème, Recurrent surface homeomorphisms, Math. Proc. Cambridge Philos. Soc., 124 (1998), 161-168. doi: 10.1017/S0305004197002272. · Zbl 0952.54025 · doi:10.1017/S0305004197002272
[37] P. Le Calvez, A finite dimensional approach to Bramham’s approximation theorem, Ann. Inst. Fourier (Grenoble), 66 (2016), 2169-2202. doi: 10.5802/aif.3061. · Zbl 1369.37039 · doi:10.5802/aif.3061
[38] F. Le Roux and S. Seyfaddini, The Anosov-Katok method and pseudo-rotations in symplectic dynamics, J. Fixed Point Theory Appl., 24 (2022), Paper No. 36, 39 pp. doi: 10.1007/s11784-022-00955-8. · Zbl 1501.37058 · doi:10.1007/s11784-022-00955-8
[39] D. McDuff and D. Salamon, \(J\)-Holomorphic Curves and Symplectic Topology, Amer. Math. Soc. Colloq. Publ., vol. 52, American Mathematical Society, Providence, RI, 2004. doi: 10.1090/coll/052. · Zbl 1064.53051 · doi:10.1090/coll/052
[40] Y.-G. Oh, Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, in The Breadth of Symplectic and Poisson Geometry, 525-570, Progr. Math., vol. 232, Birkhäuser Boston, Boston, MA, 2005. doi: 10.1007/0-8176-4419-9_18. · Zbl 1084.53076 · doi:10.1007/0-8176-4419-9_18
[41] J. Pardon, An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves, Geom. Topol., 20 (2016), 779-1034. doi: 10.2140/gt.2016.20.779. · Zbl 1342.53109 · doi:10.2140/gt.2016.20.779
[42] J. Pardon, Contact homology and virtual fundamental cycles, J. Amer. Math. Soc., 32 (2019), 825-919. doi: 10.1090/jams/924. · Zbl 1422.53071 · doi:10.1090/jams/924
[43] S. Piunikhin, D. Salamon and M. Schwarz, Symplectic Floer-Donaldson theory and quantum cohomology, in Contact and Symplectic Geometry (Cambridge, 1994), 171-200, Publ. Newton Inst., vol. 8, Cambridge Univ. Press, Cambridge, 1996. · Zbl 0874.53031
[44] C. C. Pugh, The closing lemma, Amer. J. Math., 89 (1967), 956-1009. doi: 10.2307/2373413. · Zbl 0167.21803 · doi:10.2307/2373413
[45] C. C. Pugh, An improved closing lemma and a general density theorem, Amer. J. Math., 89 (1967), 1010-1021. doi: 10.2307/2373414. · Zbl 0167.21804 · doi:10.2307/2373414
[46] C. C. Pugh and C. Robinson, The \(C^1\) closing lemma, including Hamiltonians, Ergodic Theory Dynam. Systems, 3 (1983), 261-313. doi: 10.1017/S0143385700001978. · Zbl 0548.58012 · doi:10.1017/S0143385700001978
[47] D. Salamon, Lectures on Floer homology, in Symplectic Geometry and Topology (Park City, UT, 1997), 143-229, IAS/Park City Math. Ser., vol. 7, Amer. Math. Soc., Providence, RI, 1999. doi: 10.1016/S0165-2427(99)00127-0. · doi:10.1016/S0165-2427(99)00127-0
[48] M. Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math., 193 (2000), 419-461. doi: 10.2140/pjm.2000.193.419. · Zbl 1023.57020 · doi:10.2140/pjm.2000.193.419
[49] S. Seyfaddini, \(C^0\)-limits of Hamiltonian paths and the Oh-Schwarz spectral invariants, Int. Math. Res. Not. IMRN, (2013), 4920-4960. doi: 10.1093/imrn/rns191. · Zbl 1378.53101 · doi:10.1093/imrn/rns191
[50] E. Shelukhin, Pseudo-rotations and Steenrod squares revisited, Math. Res. Lett., 28 (2021), 1255-1261. doi: 10.4310/MRL.2021.v28.n4.a13. · Zbl 1483.53102 · doi:10.4310/MRL.2021.v28.n4.a13
[51] E. Shelukhin, On the Hofer-Zehnder conjecture, Ann. of Math., 195 (2022), 775-839. doi: 10.4007/annals.2022.195.3.1. · Zbl 1503.53157 · doi:10.4007/annals.2022.195.3.1
[52] E. Shelukhin, Viterbo conjecture for Zoll symmetric spaces, Invent. Math., 230 (2022), 321-373. doi: 10.1007/s00222-022-01124-x. · Zbl 07585648 · doi:10.1007/s00222-022-01124-x
[53] M. Usher, Boundary depth in Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds, Israel J. Math., 184 (2011), 1-57. doi: 10.1007/s11856-011-0058-9. · Zbl 1253.53085 · doi:10.1007/s11856-011-0058-9
[54] C. Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann., 292 (1992), 685-710. doi: 10.1007/BF01444643. · Zbl 0735.58019 · doi:10.1007/BF01444643
[55] J. Xue, Strong closing lemma and KAM normal form, arXiv: 2207.06208, 2022.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.