×

Symmetry and monotonicity of positive solutions for a Choquard equation involving the logarithmic Laplacian operator. (English) Zbl 07925110

Summary: In this paper, we study a Schrödinger-Choquard equation involving the logarithmic Laplacian operator in \(\mathbb{R}^n\): \[ \mathcal{L}_{\triangle} u(x)+\omega u(x)=C_{n,s}(|x|^{2s-n}*u^p) u^r, x\in \mathbb{R}^n, \] where \(0<s<1, p>1, r>0, n\geq 2, \omega >0\). Using the direct method of moving planes, we prove that if \(u\) satisfies some suitable asymptotic properties, then \(u\) must be radially symmetric and monotone decreasing about some point in the whole space. The key ingredients of the proofs are the narrow region principle and decay at infinity theorem; the ideas can be applied to problems involving more general nonlocal operators.

MSC:

35S05 Pseudodifferential operators as generalizations of partial differential operators
35B06 Symmetries, invariants, etc. in context of PDEs
35R09 Integro-partial differential equations
Full Text: DOI

References:

[1] Chen, W.; Li, C.; Ou, B., Qualitative properties of solutions for an integral equation, Discr. Contin. Dyn. Syst., 12, 2, 347-354, 2005 · Zbl 1081.45003 · doi:10.3934/dcds.2005.12.347
[2] Chen, H.; Weth, T., The Dirichlet problem for the logarithmic Laplacian, Comm. Partial Differ. Equ., 44, 11, 1100-1139, 2019 · Zbl 1423.35390 · doi:10.1080/03605302.2019.1611851
[3] Riesz, M., L’intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math., 81, 1-223, 1949 · Zbl 0033.27601 · doi:10.1007/BF02395016
[4] Chen, W.; Li, C.; Li, Y., A direct method of moving planes for the fractional Laplacian, Adv. Math., 308, 404-437, 2017 · Zbl 1362.35320 · doi:10.1016/j.aim.2016.11.038
[5] Chen, W., Li, Y., Ma, P.: The fractional Laplacian, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, x+331pp (2020) · Zbl 1451.35002
[6] Ma, L.; Zhang, Z., Symmetry of positive solutions for Choquard equations with fractional-Laplacian, Nonlinear Anal., 182, 248-262, 2019 · Zbl 1411.35273 · doi:10.1016/j.na.2018.12.015
[7] Wang, X.; Yang, Z., Symmetry and monotonicity of positive solutions for a Choquard equation with the fractional Laplacian, Complex Var. Elliptic Equ., 67, 5, 1211-1228, 2021 · Zbl 1487.35422 · doi:10.1080/17476933.2020.1863385
[8] Cao, L., Fan, L.: Symmetry and monotonicity of positive solutions for a system involving fractional \(p\) &\(q\)-Laplacian in \({\mathbb{R}}^n \), Anal. Math. Phys., 12, no.2, Paper No. 42, 15 pp (2022) · Zbl 1485.35377
[9] Cao, L.; Fan, L., Symmetry and monotonicity of positive solutions for a system involving fractional \(p\) &\(q\)-Laplacian in a ball, Complex Var. Elliptic Equ., 68, 4, 667-679, 2023 · Zbl 1510.35369 · doi:10.1080/17476933.2021.2009819
[10] Le, P., Symmetry of singular solutions for a weighted Choquard equation involving the fractional \(p\)-Laplacian, Commun. Pure Appl. Anal., 19, 1, 527-539, 2020 · Zbl 1423.35403 · doi:10.3934/cpaa.2020026
[11] Guo, Y., Peng, S.: Symmetry and monotonicity of nonnegative solutions to pseudo-relativistic Choquard equations, Angew, Z. Math. Phys., 72, no.3, Paper No. 120, 20 pp (2021) · Zbl 1465.35394
[12] Wang, P.; Chen, L.; Niu, P., Symmetric properties for Choquard equations involving fully nonlinear nonlocal operators, Bull. Braz. Math. Soc., 52, 4, 841-862, 2021 · Zbl 1479.35930 · doi:10.1007/s00574-020-00234-5
[13] Fan, L.; Cao, L.; Zhao, P., Symmetry and monotonicity of positive solutions for Choquard equations involving a generalized tempered fractional \(p\)-Laplacian in \({\mathbb{R} }^n \), Fract. Calc. Appl. Anal., 26, 6, 2757-2773, 2023 · Zbl 1537.35374 · doi:10.1007/s13540-023-00207-7
[14] Zhang, L., Nie, X.: A direct method of moving planes for the Logarithmic Laplacian, Appl. Math. Lett., 118, Paper No. 107141, 7 pp (2021) · Zbl 1475.35093
[15] Zhang, R., Kumar, V., Ruzhansky, M.: Symmetry of positive solutions for Lane-Emden systems involving the Logarithmic Laplacian, Acta Appl. Math., 188, Paper No. 16 (2023)
[16] Liu, B., Xu, S.: Monotonicity of positive solutions for an indefinite logarithmic Laplacian equation, arXiv Preprint (2023). arXiv:2023.10440
[17] Ma, L.; Zhao, L., Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195, 455-467, 2010 · Zbl 1185.35260 · doi:10.1007/s00205-008-0208-3
[18] Chen, W.; Li, C.; Ou, B., Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59, 330-343, 2006 · Zbl 1093.45001 · doi:10.1002/cpa.20116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.