×

Hybrid evolutionary robust optimization-based optimal control for time-delay nonlinear systems. (English) Zbl 1522.49019

Summary: Optimal controls receive much attention owing to their remarkable performance for nonlinear systems. However, unknown time-delay disturbances in the optimal control process make it difficult to find high-quality optimal set points. To address this problem, a hybrid evolutionary robust optimization-based optimal control (HERO-OC) method is proposed to reduce the negative effect of time-delay disturbances and enhance the performance of optimal set points. First, a data-driven time-delay disturbance observer (DTDO), based on fuzzy neural networks, is designed to describe the time-delay disturbances of optimal objectives. Then, the expressions and intervals of time-delay disturbances can be estimated to improve the accuracy of optimal objectives. Second, a hybrid evolutionary robust optimization (HERO) algorithm, which combines an expectation robust optimization strategy with a min-max evolutionary robust optimization strategy, is proposed to solve optimal set points. Then, the average robustness and conservative of robustness optimal set points can be improved. Third, an adaptive time-delay controller using Lyapunov-Krasovskii functionals is proposed to track optimal set points. Then, control accuracy is improved while ensuring control stability. Finally, the superior performance of HERO-OC is compared with some novel optimal control methods in a second-order nonlinear system and a wastewater treatment process.

MSC:

49K10 Optimality conditions for free problems in two or more independent variables
49M99 Numerical methods in optimal control
90C17 Robustness in mathematical programming
Full Text: DOI

References:

[1] Lu, J.; Wei, Q.; Zhou, T.; Wang, Z.; Wang, F. Y., Event-triggered near-optimal control for unknown discrete-time nonlinear systems using parallel control, IEEE Trans. Cybern., 53, 3, 946-961 (2023)
[2] Zhang, C. J.; Ji, L. H.; Yang, S. S.; Li, H. Q., Optimal antisynchronization control for unknown multiagent systems with deep deterministic policy gradient approach, Inf. Sci., 622, 1, 946-961 (2023) · Zbl 1536.93055
[3] Han, X.; Zhao, X.; Sun, T.; Wu, Y.; Xu, N.; Zong, G., Event-triggered optimal control for discrete-time switched nonlinear systems with constrained control input, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51, 12, 7850-7859 (2021)
[4] Wei, Q.; Liao, Z.; Shi, G., Generalized actor-critic learning optimal control in smart home energy management, IEEE Trans. Ind. Inf., 17, 10, 6614-6623 (2021)
[5] Huang, Z. S.; Bai, W. W.; Li, T. S.; Long, Y.; Chen, C. L.P.; Liang, H. J.; Yang, H. Q., Adaptive reinforcement learning optimal tracking control for strict-feedback nonlinear systems with prescribed performance, Inf. Sci., 621, 1, 407-423 (2023) · Zbl 1536.93424
[6] Wang, Q.; Duan, Z.; Wang, J., Distributed optimal consensus control algorithm for continuous-time multi-agent systems, IEEE Trans. Circuits Syst. Express Briefs, 67, 1, 102-106 (Jan. 2020)
[7] Han, H. G.; Liu, Z.; Lu, W.; Hou, Y.; Qiao, J. F., Dynamic MOPSO-based optimal control for wastewater treatment process, IEEE Transactions on Cybernetics, 51, 5, 2518-2528 (May. 2021.)
[8] Zhang, H. Y.; Wang, H. Q.; Niu, B.; Zhang, L.; Ahmad, A. M., Sliding-mode surface-based adaptive actor-critic optimal control for switched nonlinear systems with average dwell time, Inf. Sci., 580, 1, 756-774 (Nov. 2021) · Zbl 07786227
[9] Wang, D.; Liu, D.; Li, H.; Luo, B.; Ma, H., An approximate optimal control approach for robust stabilization of a class of discrete-time nonlinear systems with uncertainties, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46, 5, 713-717 (May. 2016.)
[10] Li, Y.; Sun, K.; Tong, S., Adaptive fuzzy robust fault-tolerant optimal control for nonlinear large-scale systems, IEEE Trans. Fuzzy Syst., 26, 5, 2899-2914 (Oct. 2018)
[11] Yuan, J.; Wang, L.; Zhai, J.; Teo, K. L.; Yu, C.; Huang, M.; Xie, J., Robust optimal control for a batch nonlinear enzyme-catalytic switched time-delayed process with noisy output measurements, Nonlinear Anal. Hybrid Syst, 41, 101059 (2021) · Zbl 1478.93140
[12] Jajarmi, A.; Hajipour, M., An efficient recursive shooting method for the optimal control of time-varying systems with state time-delay, App. Math. Model., 4, 40, 2756-2769 (2016) · Zbl 1452.49021
[13] Zhen, S.; Zhao, H.; Huang, K.; Deng, B.; Chen, Y.-H., A novel optimal robust control design of fuzzy mechanical systems, IEEE Trans. Fuzzy Syst., 23, 6, 2012-2023 (Dec. 2015)
[14] Wang, D.; Li, C.; Liu, D. R.; Mu, C. X., Data-based robust optimal control of continuous-time affine nonlinear systems with matched uncertainties, Inf. Sci., 366, 1, 121-133 (Oct. 2016) · Zbl 1430.49030
[15] Maity, A.; Höcht, L.; Heise, C.; Holzapfel, F., Adaptive optimal control using frequency selective information of the system uncertainty with application to unmanned aircraft, IEEE Trans. Cybern., 48, 1, 165-177 (Jan. 2018)
[16] Xue, W.; Kolaric, P.; Fan, J.; Lian, B.; Chai, T.; Lewis, F. L., Inverse reinforcement learning in tracking control based on inverse optimal control, IEEE Trans. Cybern., 52, 10, 10570-10581 (Oct. 2022)
[17] Cao, Z.; Xiao, Q.; Huang, R.; Zhou, M., Robust neuro-optimal control of underactuated snake robots with experience replay, IEEE Trans. Neural Networks Learn. Syst., 29, 1, 208-217 (Jan. 2018)
[18] Zhang, H.; Cui, L.; Zhang, X.; Luo, Y., Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method, IEEE Trans. Neural Netw., 22, 12, 2226-2236 (Dec. 2011)
[19] Wang, D.; Liu, D.; Zhang, Q.; Zhao, D., Data-based adaptive critic designs for nonlinear robust optimal control with uncertain dynamics, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46, 11, 1544-1555 (Nov. 2016)
[20] Jajarmi, A.; Baleanu, D., Suboptimal control of fractional-order dynamic systems with delay argument, J. Vib. Control, 12, 24, 2430-2446 (2018) · Zbl 1400.93126
[21] Mohammadi, M.; Arefi, M. M.; Setoodeh, P.; Kaynak, O., Optimal tracking control based on reinforcement learning value iteration algorithm for time-delayed nonlinear systems with external disturbances and input constraints, Inf. Sci., 554, 1, 84-98 (Apr. 2021) · Zbl 1485.93227
[22] Zhang, Z.; Zhang, S. X.; Li, H. P.; Yan, W. S., Robust counterparts of inequalities containing sums of maxima of linear functions, Eur. J. Oper. Res., 357, 14, 9467-9483 (Sep. 2020) · Zbl 1448.93069
[23] He, Z. N.; Yen, G. G.; Yi, Z., Robust multiobjective optimization via evolutionary algorithms, IEEE Trans. Evol. Comput., 23, 2, 316-330 (Apr. 2018)
[24] Jajarmi, A.; Hajipour, M.; Baleanu, D., A new approach for the optimal control of time-varying delay systems with external persistent matched disturbances, J. Vib. Control, 19, 24, 4505-4512 (2018)
[25] Liu, J.; Liu, Y.; Jin, Y.; Li, F., A decision variable assortment-based evolutionary algorithm for dominance robust multiobjective optimization, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52, 5, 3360-3375 (May. 2022.)
[26] Lu, Y. L.; Xu, Y. J.; Herrera-Viedma, E.; Han, Y. F., Consensus of large-scale group decision making in social network: the minimum cost model based on robust optimization, Inf. Sci., 547, 910-930 (Feb. 2021) · Zbl 1479.91282
[27] He, Z.; Yen, G. G.; Lv, J., Evolutionary multiobjective optimization with robustness enhancement, IEEE Trans. Evol. Comput., 24, 3, 494-507 (Jun. 2020)
[28] Hou, Q.; Clark, A., Robust maximization of correlated submodular functions under cardinality and matroid constraints, IEEE Trans. Autom. Control, 66, 12, 6148-6155 (Dec. 2021) · Zbl 1536.93325
[29] Wang, S.; Liu, J.; Jin, Y., A Computationally Efficient Evolutionary Algorithm for Multiobjective Network Robustness Optimization, IEEE Trans. Evol. Comput., 25, 3, 419-432 (Jun. 2021)
[30] Asafuddoula, M.; Singh, H. K.; Ray, T., Six-sigma robust design optimization using a many-objective decomposition-based evolutionary algorithm, IEEE Transactions on Evolutionary Computation, 19, 4, 490-507 (Aug. 2015)
[31] Wang, M.; Ge, S. S.; Hong, K. S., Approximation-based adaptive tracking control of pure-feedback nonlinear systems with multiple unknown time-varying delays, IEEE Trans. Neural Netw., 21, 11, 1804-1816 (Nov. 2010)
[32] Li, J.; Xin, B.; Chen, J.; Wang, L., S-CoEA: subproblems co-solving evolutionary algorithm for uncertain optimization, IEEE Trans. Cybern., 52, 10, 10123-10136 (Oct. 2022)
[33] Zhang, Q.; Zhao, D.; Wang, D., Event-based robust control for uncertain nonlinear systems using adaptive dynamic programming, IEEE Trans. Neural Networks Learn. Syst., 29, 1, 37-50 (Jan. 2018)
[34] Bao, X.; Sheng, Z.; Dicianno, B. E.; Sharma, N., A tube-based model predictive control method to regulate a knee joint with functional electrical stimulation and electric motor assist, IEEE Trans. Control Syst. Technol., 29, 5, 2180-2191 (Sep. 2021)
[35] Han, H. G.; Lu, W. X.; Zhang, L.; Qiao, J. F., Adaptive gradient multiobjective particle swarm optimization, IEEE Trans. Cybern., 48, 11, 3067-3079 (Nov. 2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.