×

The (2+1)-dimensional hyperbolic nonlinear Schrödinger equation and its optical solitons. (English) Zbl 1525.37078


MSC:

37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
35C08 Soliton solutions
35Q60 PDEs in connection with optics and electromagnetic theory
35Q55 NLS equations (nonlinear Schrödinger equations)

References:

[1] Y, Optical solitons to Sasa-Satsuma model with modified simple equation approach, Optik, 184, 271-276 (2019) · doi:10.1016/j.ijleo.2019.03.020
[2] Y, Optical solitons to Sasa-Satsuma model with trial equation approach, Optik, 184, 70-74 (2019) · doi:10.1016/j.ijleo.2019.03.024
[3] K. Hosseini, M. Mirzazadeh, M. Ilie, J. F. Gómez-Aguilar, Soliton solutions of the Sasa-Satsuma equation in the monomode optical fibers including the beta-derivatives, <i>Optik</i>, <b>224</b> (2020), 165425.
[4] M. Mirzazadeh, M. Ekici, A. Sonmezoglu, M. Eslami, Q. Zhou. A. H. Kara, et al., Optical solitons with complex Ginzburg-Landau equation, <i>Nonlinear Dyn.</i>, <b>85</b> (2016), 1979-2016. · Zbl 1349.35364
[5] M, Complex wave structures for abundant solutions related to the complex Ginzburg-Landau model, Optik, 192, 162927 (2019) · doi:10.1016/j.ijleo.2019.06.027
[6] K, Solitons and Jacobi elliptic function solutions to the complex Ginzburg-Landau equation, Front. Phys., 8, 225 (2020) · doi:10.3389/fphy.2020.00225
[7] A. Biswas, H. Rezazadeh, M. Mirzazadeh, M. Eslami, M. Ekici, Q. Zhou, et al., Optical soliton perturbation with Fokas-Lenells equation using three exotic and efficient integration schemes, <i>Optik</i>, <b>165</b> (2018), 288-294.
[8] N, First integrals and general solution of the Fokas-Lenells equation, Optik, 195, 163135 (2019) · doi:10.1016/j.ijleo.2019.163135
[9] K, Optical wave structures to the Fokas-Lenells equation, Optik, 207, 164450 (2020) · doi:10.1016/j.ijleo.2020.164450
[10] A, Chirp-free bright optical solitons for perturbed Gerdjikov-Ivanov equation by semi-inverse variational principle, Optik, 147, 72-76 (2017) · doi:10.1016/j.ijleo.2017.08.019
[11] E, New optical solitons of space-time conformable fractional perturbed Gerdjikov-Ivanov equation by sine-Gordon equation method, Results Phys., 9, 1666-1672 (2018) · doi:10.1016/j.rinp.2018.04.058
[12] K, Dynamics of optical solitons in the perturbed Gerdjikov-Ivanov equation, Optik, 206, 164350 (2020) · doi:10.1016/j.ijleo.2020.164350
[13] A, Optical solitons in presence of higher order dispersions and absence of self-phase modulation, Optik, 174, 452-459 (2018) · doi:10.1016/j.ijleo.2018.08.037
[14] A, Dark-bright optical soliton and conserved vectors to the Biswas-Arshed equation with third-order dispersions in the absence of self-phase modulation, Front. Phys., 7, 28 (2019) · doi:10.3389/fphy.2019.00028
[15] K. Hosseini, M. Mirzazadeh, M. Ilie, J. F. Gómez-Aguilar, Biswas-Arshed equation with the beta time derivative: Optical solitons and other solutions, <i>Optik</i>, <b>217</b> (2020), 164801.
[16] N, A generalized model for description of propagation pulses in optical fiber, Optik, 189, 42-52 (2019) · doi:10.1016/j.ijleo.2019.05.069
[17] A, Optical solitons with Kudryashov’s equation by extended trial function, Optik, 202, 163290 (2020) · doi:10.1016/j.ijleo.2019.163701
[18] E. M. E. Zayed, R. M. A. Shohib, A. Biswas, M. Ekici, L. Moraruf, A. K. Alzahrani, et al., Optical solitons with differential group delay for Kudryashov’s model by the auxiliary equation mapping method, <i>Chinese J. Phys.</i>, <b>67</b> (2020), 631-645. · Zbl 07833212
[19] B, Nonlinear Rossby waves and their interactions (I) - Collision of envelope solitary Rossby waves, Sci. China, Ser. B, 36, 1367 (1993)
[20] S, Ultrafast transverse undulation of self-trapped laser beams, Opt. Express, 16, 16935 (2008) · doi:10.1364/OE.16.016935
[21] S, Oscillatory neck instability of spatial bright solitons in hyperbolic systems, Phys. Rev. Lett., 102, 134101 (2009) · doi:10.1103/PhysRevLett.102.134101
[22] G, Exact solutions of (2+1)-dimensional HNLS equation, Commun. Theor. Phys., 54, 401-406 (2010) · Zbl 1219.35280 · doi:10.1088/0253-6102/54/3/04
[23] A, Optical solitary waves and conservation laws to the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation, Mod. Phys. Lett. B, 32, 1850373 (2018) · doi:10.1142/S0217984918503736
[24] W, Complex optical solutions and modulation instability of hyperbolic Schrödinger dynamical equation, Results Phys., 12, 2091-2097 (2019) · doi:10.1016/j.rinp.2019.02.014
[25] H, Novel complex wave solutions of the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation, Fractal Fract., 4, 41 (2020) · doi:10.3390/fractalfract4030041
[26] E, Optical solutions of the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation using two different methods, Results Phys., 19, 103514 (2020) · doi:10.1016/j.rinp.2020.103514
[27] H, Exact solutions of (2+1)-dimensional Schrödinger’s hyperbolic equation using different techniques, Numer. Meth. Part. Differ. Equ. (2020) · Zbl 1534.35359 · doi:10.1002/num.22644
[28] J, Exp-function method for nonlinear wave equations, Chaos Soliton. Fract., 30, 700-708 (2006) · Zbl 1141.35448 · doi:10.1016/j.chaos.2006.03.020
[29] A, General <i>exp<sub>a</sub></i> function method for nonlinear evolution equations, Appl. Math. Comput., 217, 451-459 (2010) · Zbl 1201.65180
[30] K, Dark optical solitons to the Biswas-Arshed equation with high order dispersions and absence of self-phase modulation, Optik, 209, 164576 (2020) · doi:10.1016/j.ijleo.2020.164576
[31] K, Optical solitons and modulation instability of the resonant nonlinear Schrӧdinger equations in (3+1)-dimensions, Optik, 209, 164584 (2020) · doi:10.1016/j.ijleo.2020.164584
[32] K, Investigation of different wave structures to the generalized third-order nonlinear Scrödinger equation, Optik, 206, 164259 (2020) · doi:10.1016/j.ijleo.2020.164259
[33] K, High-order dispersive cubic-quintic Schrödinger equation and its exact solutions, Acta Phys. Pol. A, 136, 203-207 (2019) · doi:10.12693/APhysPolA.136.203
[34] K, Analytic study on chirped optical solitons in nonlinear metamaterials with higher order effects, Laser Phys., 29, 095402 (2019) · doi:10.1088/1555-6611/ab356f
[35] A, On finite series solutions of conformable time-fractional Cahn-Allen equation, Nonlinear Eng., 9, 194-200 (2020) · doi:10.1515/nleng-2020-0008
[36] N, Method for finding highly dispersive optical solitons of nonlinear differential equation, Optik, 206, 163550 (2020) · doi:10.1016/j.ijleo.2019.163550
[37] N, Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations, Appl. Math. Comput., 371, 124972 (2020) · Zbl 1433.35367
[38] N, Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrödinger equation, Optik, 206, 164335 (2020) · doi:10.1016/j.ijleo.2020.164335
[39] K, A (3+1)-dimensional resonant nonlinear Schrödinger equation and its Jacobi elliptic and exponential function solutions, Optik, 207, 164458 (2020) · doi:10.1016/j.ijleo.2020.164458
[40] K, An integrable (2+1)-dimensional nonlinear Schrödinger system and its optical soliton solutions, Optik, 229, 166247 (2021) · doi:10.1016/j.ijleo.2020.166247
[41] H, A new periodic solution to Jacobi elliptic functions of MKdV equation and BBM equation, Acta Math. Appl. Sin., 28, 409-415 (2012) · Zbl 1359.35165 · doi:10.1007/s10255-012-0153-7
[42] K, Soliton and other solutions to the (1+2)-dimensional chiral nonlinear Schrödinger equation, Commun. Theor. Phys., 72, 125008 (2020) · Zbl 1520.35142 · doi:10.1088/1572-9494/abb87b
[43] H, New optical solitons of nonlinear conformable fractional Schrödinger-Hirota equation, Optik, 172, 545-553 (2018) · doi:10.1016/j.ijleo.2018.06.111
[44] H. M. Srivastava, D. Baleanu, J. A. T. Machado, M. S. Osman, H. Rezazadeh, S. Arshed, et al., Traveling wave solutions to nonlinear directional couplers by modified Kudryashov method, <i>Phys. Scr.</i>, <b>95</b> (2020), 075217.
[45] H, Wick-type stochastic multi-soliton and soliton molecule solutions in the framework of nonlinear Schrödinger equation, Appl. Math. Lett., 120, 107302 (2021) · Zbl 1475.35105 · doi:10.1016/j.aml.2021.107302
[46] P. Li, R. Li, C. Dai, Existence, symmetry breaking bifurcation and stability of two-dimensional optical solitons supported by fractional diffraction, <i>Opt. Express</i>, <b>29</b> (2021), 3193-3210.
[47] C, Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals, Nonlinear Dyn., 102, 1733-1741 (2020) · doi:10.1007/s11071-020-05985-w
[48] C, Managements of scalar and vector rogue waves in a partially nonlocal nonlinear medium with linear and harmonic potentials, Nonlinear Dyn., 102, 379-391 (2020) · doi:10.1007/s11071-020-05949-0
[49] B, Dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas-Lenells equation, Alex. Eng. J., 59, 4699-4707 (2020) · doi:10.1016/j.aej.2020.08.027
[50] S. Boulaaras, A. Choucha, B. Cherif, A. Alharbi, M. Abdalla, Blow up of solutions for a system of two singular nonlocal viscoelastic equations with damping, general source terms and a wide class of relaxation functions, <i>AIMS Mathematics</i>, <b>6</b> (2021), 4664-4676. · Zbl 1484.35278
[51] A. Choucha, S. Boulaaras, D. Ouchenane, M. Abdalla, I. Mekawy, A. Benbella, Existence and uniqueness for Moore-Gibson-Thompson equation with, source terms, viscoelastic memory and integral condition, <i>AIMS Mathematics</i>, <b>6</b> (2021), 7585-7624. · Zbl 1484.35051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.