×

Behaviours of rip cosmological models in \(f(Q, C)\) gravity. (English) Zbl 07906318

Summary: In this study, the Universe’s rip cosmology theories have been provided for the \(f(Q, C)\) gravity theory, where \(Q\) and \(C\) stand for the non-metricity scalar and boundary term. We assume \(f(Q, C) = \alpha Q^n + \beta C\) and analyze the nature of the physical parameters for the Little Rip (LR), Big Rip (BR) and Pseudo Rip (PR) models. In the LR and PR models, the EoS parameter exhibits phantom characteristics but remains closely aligned with the \(\Lambda\) CDM line. The non-metricity term \(Q\) has direct effect on the rip models. After investigating the energy conditions, we recognise that our model violates the strong energy constraint. Avoiding singularity situations has been noted in all of these accelerated models. The characteristics of the jerk and snap parameters have been investigated. Our model provides an effective description of the Universe’s evolutionary history and fits well with contemporary cosmic data.

References:

[1] Misner, C.; Thorne, K.; Wheeler, J., Gravitation, 1973
[2] Clifton, T.; Ferreira, P. G.; Padilla, A.; Skordis, C., Modified gravity and cosmology, Phys. Rep., 513, 1, 2012
[3] Riess, A. G.; Casertano, S.; Yuan, W.; Macri, L. M.; Scolnic, D., Large magellanic cloud Cepheid standards provide a 1
[4] Frampton, P. H.; Takahashi, T., Models for little rip dark energy, Phys. Lett. B, 557, 135, 2003
[5] Vagnozzi, S., New physics in light of the \(H_0\) tension: an alternative view, Phys. Rev. D, 102, Article 023518 pp., 2020
[6] Starobinsky, A. A., Future and origin of our universe: modern view, Gravit. Cosmol., 6, 157, 2000 · Zbl 1009.83076
[7] Nojiri, S.; Odintsov, S. D., Quantum deSitter cosmology and phantom matter, Phys. Lett. B, 562, 147, 2003 · Zbl 1027.83543
[8] Frampton, P. H.; Ludwick, K. J.; Scherrer, R. J., The little rip, Phys. Rev. D, 84, Article 063003 pp., 2011
[9] Astashenok, A. V., Phantom cosmology without big rip singularity, Phys. Lett. B, 709, 396, 2012
[10] Caldwell, R. R.; Kamionkowski, M.; Weinberg, N. N., Phantom energy and cosmic doomsday, Phys. Rev. Lett., 91, Article 071301 pp., 2003
[11] Bouhmadi-López, Mariam; Errahmani, Ahmed; Martín-Moruno, Prado; Ouali, Taoufik; Tavakoli, Yaser, The little sibling of the big rip singularity, Int. J. Mod. Phys. D, 24, Article 1550078 pp., 2015
[12] Albarran, I.; Cabral, F., The avoidance of the little sibling of the big rip abrupt event by a quantum approach, Galaxies, 6, 1, 21, 2018
[13] Wei, Hao; Wang, Long-Fei; Guo, Xiao-Jiao, Quasi-rip: a new type of rip model without cosmic doomsday, Phys. Rev. D, 86, Article 083003 pp., 2012
[14] Brevik, I.; Obukhov, V. V.; Timoshkin, A. V., Quasi-rip universe induced by the fluid with inhomogeneous equation of state, Tomsk State Pedagog. Univ. Bull., 13, 128, 42-44, 2012
[15] Elizalde, E.; Makarenko, A. N.; Nojiri, S.; Obukhov, V. V.; Odintsov, S. D., Multiple ΛCDM cosmology with string landscape features and future singularities, Astrophys. Space Sci., 344, 479-488, 2013
[16] Brevik, I.; Myrzakulov, R.; Nojiri, S.; Odintsov, S. D., Phys. Rev. D, 86, Article 063007 pp., 2012
[17] Nojiri, S.; Odintsov, S. D., Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models, Phys. Rep., 505, 59, 2011, [INSPIRE]
[18] Nojiri, S.; Odintsov, S. D., Modified gravity and its reconstruction from the universe expansion history, J. Phys. Conf. Ser., 66, Article 012005 pp., 2007
[19] Padmanabhan, T.; Kothawala, D., Lanczos-Lovelock models of gravity, Phys. Rep., 531, 115, 2013 · Zbl 1356.83002
[20] Amendola, Luca, Scaling solutions in general nonminimal coupling theories, Phys. Rev. D, 60, Article 043501 pp., 1999
[21] Dvali, Gia; Gabadadze, Gregory; Porrati, Massimo, 4D gravity on a brane in 5D Minkowski space, Phys. Lett. B, 485, 208, 2000 · Zbl 0961.83045
[22] Nester, J. M.; Yo, H-J., Symmetric teleparallel general relativity, Chin. J. Phys., 37, 113, 1999 · Zbl 07844754
[23] Jimenez, J. B.; Heisenberg, L.; Koivisto, T., Coincident general relativity, Phys. Rev. D, 98, Article 044048 pp., 2018
[24] Bahamonde, S., Teleparallel gravity: from theory to cosmology, Rep. Prog. Phys., 86, Article 026901 pp., 2023
[25] De, A.; Loo, T. H.; Saridakis, E. N., Non-metricity with boundary terms: \(f(Q, C)\) gravity and cosmology · Zbl 07868095
[26] Capozziello, S.; De Falco, V.; Ferrara, C., The role of the boundary term in \(f(Q, B)\) symmetric teleparallel gravity
[27] Houndjo, M. J.S., Thermodynamics in little rip cosmology in the framework of a type of \(f(R, T)\) gravity, Eur. Phys. J. Plus, 129, 171, 2014
[28] Rao, V. S.; Ganesh, V.; Dasunaidu, K., Study of rip cosmological models in \(f(T, B)\) gravity, Indian J. Phys., 2024
[29] Mishra, B.; Tripathy, S. K., Investigating the physical and geometrical parameters of the cosmological models with anisotropic background, Phys. Scr., 95, Article 095004 pp., 2020
[30] Pati, Laxmipriya; Kadam, S. A.; Tripathy, S. K.; Mishra, B., Rip cosmological models in extended symmetric teleparallel gravity, Phys. Dark Universe, 35, Article 100925 pp., 2022
[31] Rana, Dheeraj Singh; Solanki, Raja; Sahoo, P. K., Phase-space analysis of the viscous fluid cosmological models in the coincident \(f(Q)\) gravity, Phys. Dark Universe, 43, Article 101421 pp., 2024
[32] Maurya, D. C., Quintessence behaviour dark energy models in \(f(Q, B)\) gravity theory with observational constraints, Astron. Comput., 46, Article 100798 pp., 2024
[33] Devi, L. A.; Singh, S. S.; Alam, M. K., Phase transition of Bianchi-type I cosmological model in \(f(T)\) gravity, New Astron., 107, Article 102156 pp., 2024
[34] Brevik, I.; Elizalde, E.; Nojiri, S.; Odintsov, S. D., Viscous little rip cosmology, Phys. Rev. D, 84, Article 103508 pp., 2011
[35] Lohakare, S. V.; Tello-Ortiz, F.; Mishra, B., The fate of the universe evolution in the quadratic form of Ricci-Gauss-Bonnet cosmology, Gravit. Cosmol., 29, 443-455, 2023 · Zbl 1535.83101
[36] Camarena, D.; Marra, V., Local determination of the Hubble constant and the deceleration parameter, Phys. Rev. Res., 2, Article 013028 pp., 2020
[37] Valentino, E. D.; Melchiorri, A.; Silk, J., Reconciling Planck with the local value of \(H_0\) in extended parameter space, Phys. Lett. B, 761, 242, 2016
[38] Fernández-Jambrina, L.; Lazkoz, R., New futures for cosmological models, Philos. Trans. R. Soc. A, 380, Article 20210333 pp., 2022
[39] Frampton, P. H., Models for little rip dark energy, Phys. Lett. B, 708, 204, 2012
[40] Frampton, P. H.; Ludwick, K. J.; Scherrer, R. J., Pseudo-rip: cosmological models intermediate between the cosmological constant and the little rip, Phys. Rev. D, 85, Article 083001 pp., 2012
[41] Nojiri, S.; Odintsov, S. D., Inhomogeneous equation of state of the universe: phantom era, future singularity, and crossing the phantom barrier, Phys. Rev. D, 72, Article 023003 pp., 2005
[42] Brevik, I.; Timoshkin, A. V., Viscous fluid holographic bounce, Int. J. Geom. Methods Mod. Phys., 17, 02, Article 2050023 pp., 2019 · Zbl 07806587
[43] Brevik, I.; Timoshkin, A. V., Int. J. Geom. Methods Mod. Phys., 18, 09, Article 2150149 pp., 2021 · Zbl 07830863
[44] Brevik, I.; Timoshkin, A. V., Int. J. Geom. Methods Mod. Phys., 17, 06, Article 2050087 pp., 2020 · Zbl 07809131
[45] Bamba, K.; Makarenko, A. N.; Myagky, A. N.; Nojiri, S.; Odintsov, S. D., Bounce cosmology from \(F(R)\) gravity and \(F(R)\) bigravity, J. Cosmol. Astropart. Phys., 01, Article 008 pp., 2014
[46] Ray, Pratik P.; Tarai, Sankarsan; Mishra, B.; Tripathy, S. K., Cosmological models with big rip and pseudo rip scenarios in extended theory of gravity, Fortschr. Phys., 69, 10, Article 2100086 pp., 2021 · Zbl 1537.83197
[47] Aghanim, N., Astron. Astrophys., 641, A6, 2020
[48] Astashenoka, Artyom V.; Elizaldeb, Emilio; Odintsovb, Sergei D.; Yurov, Artyom V., Equation-of-state formalism for dark energy models on the brane and the future of brane universes, Eur. Phys. J. C, 72, 2260, 2012
[49] Wald, R. M., General Relativity, 1984, University of Chicago Press: University of Chicago Press Chicago, IL · Zbl 0549.53001
[50] Raychaudhuri, Amalkumar, Relativistic cosmology. I, Phys. Rev. D, 98, Article 1123 pp., 1955 · Zbl 0066.22204
[51] Capozzeiello, S.; Lobo, F. S.N.; Mimoso, J. P., Energy conditions in modified gravity, Phys. Rev. D, 91, Article 124019 pp., 2015
[52] Koussour, M.; Errehymy, A.; Donmez, O.; Myrzakulov, K.; Khan, M.; Çil, B.; Güdekli, E., Constraints on bulk viscosity in \(f(Q, T)\) gravity from \(H(z)\)/pantheon+ data, Phys. Dark Universe, 45, Article 101527 pp., 2024
[53] Samaddar, Amit; Singh, S. Surendra; Alam, Md Khurshid, Dynamical system approach of interacting dark energy models with minimally coupled scalar field, Int. J. Mod. Phys. D, 2023
[54] Samaddar, Amit; Singh, S. Surendra, Qualitative stability analysis of cosmological models in \(f(T, \phi)\) gravity, Gen. Relativ. Gravit., 55, 111, 2023 · Zbl 1532.83095
[55] Samaddar, Amit; Sanasam, Surendra, Dynamical system method of viscous fluid in \(f(T)\) gravity theory, Phys. Scr., 99, Article 035219 pp., 2024
[56] Samaddar, A.; Singh, S. S., Dynamical system approach and thermodynamical perspective of Hořava-Lifshitz gravity, Fortschr. Phys., 2400006, 2024
[57] Agrawal, A. S.; Mishra, B.; Tripathy, S. K., Observationally constrained accelerating cosmological model with higher power of non-metricity and squared trace, J. High Energy Astrophys., 38, 41, 2023
[58] Camarena, D., Local determination of the Hubble constant and the deceleration parameter, Phys. Rev. Res., 2, Article 013028 pp., 2020
[59] Riess, A. G., Astrophys. J., 861, 126, 2018
[60] Amanullah, R., Spectra and light curves of six type ia supernovae at \(0.511 < z < 1.12\) and the Union2 compilation, Astrophys. J., 716, 712, 2010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.