×

Vibration suppression for an elastically supported nonlinear beam coupled to an inertial nonlinear energy sink. (English) Zbl 1537.74190

Summary: This paper investigates the vibration suppression of an elastically supported nonlinear cantilever beam attached to an inertial nonlinear energy sink (NES). The nonlinear terms introduced by the NES are transferred as the external excitations acting on the beam. The governing equations of the nonlinear beam with an inertial NES are derived according to the Lagrange equations and the assumed mode method. The linear and nonlinear frequencies of the beam are numerically obtained by the Rayleigh-Ritz method and the direct iteration method, respectively. The frequencies are verified by the results of the finite element analysis and literature. The responses of the beam under shock excitations and harmonic excitations are numerically solved by the fourth-order Runge-Kutta method. The suppression effect of the inertial NES on the transverse vibration of the beam is evaluated through the values of amplitude reduction and energy dissipation. In addition, a parametric analysis of the inertial NES is conducted to improve the vibration reduction effect of the NES on the beam.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74H45 Vibrations in dynamical problems in solid mechanics
Full Text: DOI

References:

[1] Zuo, L. and Nayfeh, S. A., The two-degree-of-freedom tuned-mass damper for suppression of single-mode vibration under random and harmonic excitation, J. Vib. Acoust.128 (2006) 56-65.
[2] Tigli, O. F., Optimum vibration absorber (tuned mass damper) design for linear damped systems subjected to random loads, J. Sound Vib.331 (2012) 3035-3049.
[3] Davis, C. L. and Lesieutre, G. A., An actively tuned solid-state vibration absorber using capacitive shunting of piezoelectric stiffness, J. Sound Vib.232 (2000) 601-617.
[4] Loh, C. H. and Lin, P. Y., Kalman filter approach for the control of seismic-induced building vibration using active mass damper systems, Struct. Des. Tall Build.6 (1997) 209-224.
[5] Vakakis, A. F., Inducing passive nonlinear energy sinks in vibrating systems, J. Vib. Acoust.123 (2001) 324-332.
[6] Xue, J. R., Zhang, Y. W., Ding, H. and Chen, L. Q., Vibration reduction evaluation of a linear system with a nonlinear energy sink under a harmonic and random excitation, Appl. Math. Mech.41 (2019) 1-14. · Zbl 1462.74071
[7] Blanchard, A., Bergman, L. A. and Vakakis, A. F., Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow, Nonlinear Dyn.99 (2019) 593-609. · Zbl 1430.76236
[8] Wei, Y., Wei, S., Zhang, Q., Dong, X., Peng, Z. and Zhang, W., Targeted energy transfer of a parallel nonlinear energy sink, Appl. Math. Mech.40 (2019) 621-630.
[9] McFarland, D. M., Kerschen, G., Kowtko, J. J., Lee, Y. S., Bergman, L. A. and Vakakis, A. F., Experimental investigation of targeted energy transfers in strongly and nonlinearly coupled oscillators, J. Acoust. Soc. Am.118 (2005) 791-799.
[10] Li, X., Liu, K., Xiong, L. and Tang, L., Development and validation of a piecewise linear nonlinear energy sink for vibration suppression and energy harvesting, J. Sound Vib.503 (2021) 116104.
[11] Gendelman, O. V., Targeted energy transfer in systems with external and self-excitation, Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.225 (2011) 2007-2043.
[12] Zang, J. and Chen, L. Q., Complex dynamics of a harmonically excited structure coupled with a nonlinear energy sink, Acta Mech. Sin.33 (2017) 801-822. · Zbl 1381.70038
[13] Ahmadabadi, Z. N. and Khadem, S. E., Annihilation of high-amplitude periodic responses of a forced two degrees-of-freedom oscillatory system using nonlinear energy sink, J. Vib. Control19 (2012) 2401-2412.
[14] Tsakirtzis, S., Panagopoulos, P. N., Kerschen, G., Gendelman, O., Vakakis, A. F. and Bergman, L. A., Complex dynamics and targeted energy transfer in linear oscillators coupled to multi-degree-of-freedom essentially nonlinear attachments, Nonlinear Dyn.48 (2006) 285-318. · Zbl 1180.70028
[15] Georgiades, F. and Vakakis, A. F., Dynamics of a linear beam with an attached local nonlinear energy sink, Commun. Nonlinear Sci. Num. Simul.12 (2007) 643-651. · Zbl 1110.74037
[16] Zhang, Y. W., Zhang, H., Hou, S., Xu, K. F. and Chen, L. Q., Vibration suppression of composite laminated plate with nonlinear energy sink, Acta Astronaut.123 (2016) 109-115.
[17] Gendelman, O. V. and Alloni, A., Dynamics of forced system with vibro-impact energy sink, J. Sound Vib.358 (2015) 301-314.
[18] Farid, M., Gendelman, O. V. and Babitsky, V. I., Dynamics of a hybrid vibro-impact nonlinear energy sink, ZAMM J. Appl. Math. Mech.101 (2019) e201800341. · Zbl 07813127
[19] Habib, G. and Romeo, F., The tuned bistable nonlinear energy sink, Nonlinear Dyn.89 (2017) 179-196.
[20] Farid, M. and Gendelman, O. V., Tuned pendulum as nonlinear energy sink for broad energy range, J. Vib. Control23 (2016) 373-388.
[21] Al Shudeifat, M. A., Wierschem, N. E., Bergman, L. A. and Vakakis, A. F., Numerical and experimental investigations of a rotating nonlinear energy sink, Meccanica52 (2016) 763-779.
[22] Tsiatas, G. C. and Charalampakis, A. E., A new hysteretic nonlinear energy sink (HNES), Commun. Nonlin. Sci. Numer. Simul.60 (2018) 1-11. · Zbl 1477.74046
[23] Smith, M. C., Synthesis of mechanical networks: The inerter, IEEE Trans. Autom. Control47 (2002) 1648-1662. · Zbl 1364.70038
[24] Giaralis, A. and Petrini, F., Wind-induced vibration mitigation in tall buildings using the tuned mass-damper-inerter, J. Struct. Eng.143 (2017) 04017127.
[25] Li, Y., Jiang, J. Z. and Neild, S., Inerter-based configurations for main-landing-gear shimmy suppression, J. Aircraft54 (2017) 684-693.
[26] Shen, Y., Chen, L., Yang, X., Shi, D. and Yang, J., Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension, J. Sound Vib.361 (2016) 148-158.
[27] Shi, X. and Zhu, S., Dynamic characteristics of stay cables with inerter dampers, J. Sound Vib.423 (2018) 287-305.
[28] Zhang, Y. W., Lu, Y. N., Zhang, W., Teng, Y. Y., Yang, H. X., Yang, T. Z. and Chen, L. Q., Nonlinear energy sink with inerter, Mech. Syst. Sig. Process.125 (2019) 52-64.
[29] Zhang, Z., Ding, H., Zhang, Y. W. and Chen, L. Q., Vibration suppression of an elastic beam with boundary inerter-enhanced nonlinear energy sinks, Acta Mech. Sin.37 (2021) 387-401.
[30] Zhang, Z., Lu, Z. Q., Ding, H. and Chen, L. Q., An inertial nonlinear energy sink, J. Sound Vib.450 (2019) 199-213.
[31] Mao, X. Y., Ding, H. and Chen, L. Q., Vibration of flexible structures under nonlinear boundary conditions, J. Appl. Mech.84 (2017) 11.
[32] Zang, J., Cao, R. Q. and Zhang, Y. W., Steady-state response of a viscoelastic beam with asymmetric elastic supports coupled to a lever-type nonlinear energy sink, Nonlinear Dyn.105 (2021) 1327-1341.
[33] Ding, H., Zhu, M. H. and Chen, L. Q., Nonlinear vibration isolation of a viscoelastic beam, Nonlinear Dyn.92 (2018) 325-349.
[34] Kani, M., Khadem, S. E., Pashaei, M. H. and Dardel, M., Vibration control of a nonlinear beam with a nonlinear energy sink, Nonlinear Dyn.83 (2015) 1-22.
[35] Parseh, M., Dardel, M., Ghasemi, M. H. and Pashaei, M. H., Steady state dynamics of a non-linear beam coupled to a non-linear energy sink, Int. J. Non-Linear Mech.79 (2016) 48-65.
[36] Zhang, Y. W., Hou, S., Zhang, Z., Zang, J., Ni, Z. Y., Teng, Y. Y. and Chen, L. Q., Nonlinear vibration absorption of laminated composite beams in complex environment, Nonlinear Dyn.99 (2020) 2605-2622.
[37] Vakakis, A. F., Passive nonlinear targeted energy transfer, Philos. Trans. A Math. Phys. Eng. Sci.376 (2018) 20170132. · Zbl 1404.76243
[38] Chen, J., Zhang, W., Yao, M., Liu, J. and Sun, M., Vibration reduction in truss core sandwich plate with internal nonlinear energy sink, Compos. Struct.193 (2018) 180-188.
[39] Lu, Z., Li, K., Ding, H. and Chen, L., Nonlinear energy harvesting based on a modified snap-through mechanism, Appl. Math. Mech.40 (2018) 167-180. · Zbl 1416.74071
[40] Fang, Z. W., Zhang, Y. W., Li, X., Ding, H. and Chen, L. Q., Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester, J. Sound Vib.391 (2017) 35-49.
[41] Ding, H., Lu, Z. Q. and Chen, L. Q., Nonlinear isolation of transverse vibration of pre-pressure beams, J. Sound Vib.442 (2019) 738-751.
[42] Zhang, W., Chang, Z. Y. and Chen, J., Vibration reduction for an asymmetric elastically supported beam coupled to an inertial nonlinear energy sink, J. Vib. Eng. Technol. (2022) 1-13, https://doi.org/10.1007/s42417-022-00666-x.
[43] Wang, Y. and Chen, J., Nonlinear free vibration of rotating functionally graded graphene platelets reinforced blades with variable cross-sections, Eng. Anal. Bound. Elem.144 (2022) 262-278. · Zbl 1537.74139
[44] Ke, L. L., Yang, J. and Kitipornchai, S., Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams, Compos. Struct.92 (2010) 676-683.
[45] Marur, S. R. and Prathap, G., Non-linear beam vibration problems and simplifications in finite element models, Comput. Mech.35 (2004) 352-360. · Zbl 1109.74363
[46] Chen, M., Papageorgiou, C., Scheibe, F., Wang, F. C. and Smith, M., The missing mechanical circuit element, IEEE Circ. Syst. Mag.9 (2009) 10-26.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.