×

Nonlinear neural-like P model for time series classification. (English) Zbl 07723914

Summary: Gated spiking neural P (GSNP) model is a novel recurrent model proposed recently, which is viewed as a variant of recurrent neural network. Time series classification (TSC) is one of the most challenging problems in data mining. In this work, based on the GSNP model, a nonlinear neural-like P (NNP) model for TSC is proposed. NNP model introduces the bidirectional mechanism and attention mechanism in deep learning, and builds nonlinear neuron modules together with GSNP to realize end-to-end learning. The neuron modules excavate the hidden features of time series to distinguish data and realize effective classification. Through evaluating on UCR Time Series Classification Archive, the classification performance of NNP model is significantly better than that of GSNP and other classification models. The NNP model can compete with advanced models on TSC task.

MSC:

68Qxx Theory of computing

Software:

Adam
Full Text: DOI

References:

[1] Ionescu, M.; Păun, G.; Yokomori, T., Spiking neural P systems, Fundam. Inform., 71, 279-308 (2011) · Zbl 1110.68043
[2] Song, B.; Li, K.; Orellana-Martín, D.; Pérez-Jiménez, M. J.; Pérez-Hurtado, I., A survey of nature-inspired computing: Membrane computing, ACM Comput. Surv., 54, 1-31 (2021)
[3] Păun, G., A dozen of research topics in membrane computing, Theor. Comput. Sci., 736, 76-78 (2018) · Zbl 1395.68124
[4] Wu, T.; Zhang, L.; Qiang, L.; Jin, Y., Asynchronous spiking neural P systems with local synchronization of rules, Inf. Sci., 588, 1-12 (2021) · Zbl 1535.68096
[5] Zhang, L.; Xu, F., Spiking neural P systems with cooperative synapses, Neurocomputing, 501, 222-230 (2022)
[6] Peng, H.; Lv, Z.; Li, B.; Luo, X.; Riscos-Núez, A., Nonlinear spiking neural P systems, Int. J. Neural Syst., 30, Article 2050008 pp. (2020)
[7] Zhou, N.; Peng, H.; Wang, J.; Yang, Q.; Luo, X., Computational completeness of spiking neural P systems with inhibitory rules for generating string languages, Theor. Comput. Sci., 920, 64-75 (2022) · Zbl 1535.68097
[8] Zhao, Y.; Liu, Y.; Liu, X.; Sun, M.; Qi, F.; Zheng, Y., Self-adapting spiking neural P systems with refractory period and propagation delay, Inf. Sci., 589, 80-93 (2022) · Zbl 1536.92024
[9] Gatti, M.; Leporati, A.; Zandron, C., On spiking neural membrane systems with neuron and synapse creation, Int. J. Neural Syst., 32, Article 2250036 pp. (2022)
[10] Cabarle, F.; Adorna, H. N.; Pérez-Jiménez, M., Spiking neural P systems with structural plasticity, Neural Comput. Appl., 26, 1337-1347 (2016)
[11] Dong, J.; Zhang, G.; Luo, B.; Yang, Q.; Guo, D.; Rong, H.; Zhu, M.; Zhou, K., A distributed adaptive optimization spiking neural P system for approximately solving combinatorial optimization problems, Inf. Sci., 596, 1-14 (2022) · Zbl 1540.90233
[12] Xue, J.; Wang, Y.; Kong, D.; Wu, F.; Liu, X., Deep hybrid neural-like P systems for multiorgan segmentation in head and neck ct/mr images, Expert Syst. Appl., 168, Article 114446 pp. (2021)
[13] Wang, T.; Liu, W.; Cabrera, L. V.; Wang, P.; Wei, X.; Zang, T., A novel fault diagnosis method of smart grids based on memory spiking neural P systems considering measurement tampering attacks, Inf. Sci., 596, 520-536 (2022)
[14] Muniyandi, R. C.; Sundararajan, E., Using graphics processing unit to accelerate simulation of membrane computing, (International Conference on Electrical Engineering and Informatics (2017)), 1-6
[15] Song, T.; Pan, L.; Wu, T.; Zheng, P.; Wong, M.; Rodríguez-Patón, A., Spiking neural P systems with learning functions, IEEE Trans. Nanobiosci., 18, 176-190 (2019)
[16] Wu, T.; Pan, L.; Yu, Q.; Tan, K. C., Numerical spiking neural P systems, IEEE Trans. Neural Netw. Learn. Syst., 32, 2443-2457 (2020)
[17] Liu, Q.; Long, L.; Peng, H.; Wang, J.; Yang, Q.; Song, X.; Riscos-Nunez, A.; Perez-Jimenez, M. J., Gated spiking neural P systems for time series forecasting, IEEE Trans. Neural Netw. Learn. Syst., 99, 1-10 (2021)
[18] Taylor, J. W.; Mcsharry, P. E.; Buizza, R., Wind power density forecasting using ensemble predictions and time series models, IEEE Trans. Energy Convers., 24, 775-782 (2009)
[19] Shewhart, W. A.; Wilks, S. S., Analysis of Financial Time Series (2005), Wiley · Zbl 1086.91054
[20] Rajkomar, A.; Oren, E.; Chen, K.; Dai, A. M.; Hajaj, N.; Hardt, M.; Liu, P. J.; Liu, X.; Marcus, J.; Sun, M.a., Scalable and accurate deep learning for electronic health records, npj Digit. Med., 1, 18 (2018)
[21] Nweke, H. F.; Teh, Y. W.; Al-Garadi, M. A.; Alo, U. R., Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges, Expert Syst. Appl., 105, 233-261 (2018)
[22] Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L., Deep learning for sensor-based activity recognition: A survey, Pattern Recognit. Lett., 119, 3-11 (2019)
[23] Qiu, S.; Zhao, H.; Jiang, N.; Wang, Z.; Liu, L.; An, Y.; Zhao, H.; Miao, X.; Liu, R.; Fortino, G., Multi-sensor information fusion based on machine learning for real applications in human activity recognition: State-of-the-art and research challenges, Inf. Fusion, 80, 241-265 (2022)
[24] Jebb, Andrew T.; Tay, Louis; Wang, Wei; Huang, Qiming, Time series analysis for psychological research: examining and forecasting change, Front. Psychol., 6, 727 (2015)
[25] Albu, A.; Precup, R. E.; Teban, T. A., Results and challenges of artificial neural networks used for decision-making and control in medical applications, Facta Univ., Mech. Eng., 17, 3, 285 (2019)
[26] Sun, J.; Yang, Y.; Liu, Y.; Chen, C.; Rao, W.; Bai, Y., Univariate time series classification using information geometry, Pattern Recognit., 95, 24-35 (2019)
[27] Dau, H. A.; Bagnall, A.; Kamgar, K.; Yeh, C.-C. M.; Zhu, Y.; Gharghabi, S.; Ratanamahatana, C. A.; Keogh, E., The ucr time series archive, IEEE/CAA J. Autom. Sin., 6, 1293-1305 (2019)
[28] Bagnall, Anthony; Lines, Jason; Bostrom, Aaron; Large, James; Keogh, Eamonn, The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances, Data Min. Knowl. Discov., 31, 606-660 (2017)
[29] Yu, D.; Yu, X.; Hu, Q.; Liu, J.; Wu, A., Dynamic time warping constraint learning for large margin nearest neighbor classification, Inf. Sci., 181, 2787-2796 (2011)
[30] Hills, J.; Lines, J.; Baranauskas, E.; Mapp, J.; Bagnall, A., Classification of time series by shapelet transformation, Data Min. Knowl. Discov., 28, 851-881 (2013) · Zbl 1298.62098
[31] Li, G.; Choi, B.; Xu, J.; Bhowmick, S. S.; Wong, G. L., Efficient shapelet discovery for time series classification, IEEE Trans. Knowl. Data Eng., 34, 1149-1163 (2020)
[32] Abdelmadjid, L.; Boucheham, B., A fast and accurate similarity measure for long time series classification based on local extrema and dynamic time warping, Expert Syst. Appl., 168, Article 114374 pp. (2020)
[33] Choi, W.; Cho, J.; Lee, S.; Jung, Y., Fast constrained dynamic time warping for similarity measure of time series data, IEEE Access, 8, 222841-222858 (2020)
[34] Li, G.; Yan, W.; Wu, Z., Discovering shapelets with key points in time series classification, Expert Syst. Appl., 132, 76-86 (2019)
[35] Ji, C.; Hu, Y.; Liu, S.; Pan, L.; Li, B.; Zheng, X., Fully convolutional networks with shapelet features for time series classification, Inf. Sci., 612, 835-847 (2022)
[36] Lines, J.; Bagnall, A., Time series classification with ensembles of elastic distance measures, Data Min. Knowl. Discov., 29, 565-592 (2015) · Zbl 1405.68295
[37] Bagnall, A.; Lines, J.; Hills, J.; Bostrom, A., Time-series classification with cote: The collective of transformation-based ensembles, IEEE Trans. Knowl. Data Eng., 27, 2522-2535 (2015)
[38] Lines, J.; Taylor, S.; Bagnall, A., Time series classification with hive-cote: The hierarchical vote collective of transformation-based ensembles, ACM Trans. Knowl. Discov. Data, 12, 1-35 (2018)
[39] Fawaz, H. I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P. A., Deep learning for time series classification: a review, Data Min. Knowl. Discov., 33, 917-963 (2019) · Zbl 1458.68196
[40] Wang, Z.; Yan, W.; Oates, T., Time series classification from scratch with deep neural networks: A strong baseline, (2017 International Joint Conference on Neural Networks 2017 (2017)), 1578-1585
[41] Karim, F.; Majumdar, S.; Darabi, H.; Chen, S., LSTM fully convolutional networks for time series classification, IEEE Access, 6, 1662-1669 (2018)
[42] Chen, W.; Shi, K., Multi-scale attention convolutional neural network for time series classification, Neural Netw., 136, 126-140 (2021)
[43] Rongjun Chen, S. W.G. X.; Yan, Xuanhui, Da-net: Dual-attention network for multivariate time series classification, Inf. Sci., 610, 472-487 (2022)
[44] Serrá, J.; Pascual, S.; Karatzoglou, A., Towards a universal neural network encoder for time series, (Proc. of the Int. Conf. of the Catalan Association for Artificial Intelligence (CCIA). Proc. of the Int. Conf. of the Catalan Association for Artificial Intelligence (CCIA), Frontiers in Artificial Intelligence and Applications, vol. 308 (2018)), 120-129
[45] Banerjee, D.; Islam, K.; Gang, M.; Xiao, L.; Jiang, L., A deep transfer learning approach for improved post-traumatic stress disorder diagnosis, (IEEE International Conference on Data Mining (2017))
[46] Aswolinskiy, W.; Reinhart, R. F.; Steil, J., Time series classification in reservoir- and model-space, Neural Process. Lett., 48, 789-809 (2017)
[47] Dai, J.; Qi, F.; Gong, G.; Liu, X.; Li, D.; Xue, J., Hypergraph-based spiking neural P systems for predicting the overall survival time of glioblastoma patients, Expert Syst. Appl., 215, Article 119234 pp. (2023)
[48] Bahdanau, D.; Cho, K.; Bengio, Y., Neural machine translation by jointly learning to align and translate, Collana Inform., 1-15 (2014)
[49] Kingma, D.; Ba Adam, J., A method for stochastic optimization, Comput. Sci., 1-15 (2014)
[50] Zhao, J.; Zeng, D.; Liang, S.; Kang, H.; Liu, Q., Prediction model for stock price trend based on recurrent neural network, J. Ambient Intell. Humaniz. Comput., 12, 745-753 (2020)
[51] Xiang, Z.; Yan, J.; Demir, I., A rainfall-runoff model with lstm-based sequence-to-sequence learning, Water Resour. Res., 56, 1-17 (2020)
[52] Wang, T.; Liu, Z.; Zhang, T.; Hussain, S. F.; Waqas, M.; Li, Y., Adaptive feature fusion for time series classification, Knowl.-Based Syst., 243, Article 108459 pp. (2022)
[53] Liu, Q.; Long, L.; Yang, Q.; Peng, H.; Wang, J.; Luo LSTM-SNP, X., A long short-term memory model inspired from spiking neural P systems, Knowl.-Based Syst., 235, Article 107656 pp. (2022)
[54] He, C.; Huo, X.; Gao, H., FT-FVC: fast transformation-based feature vector concatenation for time series classification, Appl. Intell., 1-18 (2023)
[55] Li, G.; Xu, S.; Wang, S.; Philip, S. Y., Forest based on interval transformation (FIT): A time series classifier with adaptive features, Expert Syst. Appl., 213, Article 118923 pp. (2023)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.