×

Centralizer-like additive maps on the Lie structure of Banach algebras. (English) Zbl 07788972

Summary: Let \(\mathcal{U}\) be an associative unital Banach algebra endowed with the Lie product \([x,y]=xy-yx (x,y\in\mathcal{U})\) and create a Lie algebra. In this article, we are going to study the additive maps on \(\mathcal{U}\) that act at idempotent-products such as centralizers on the Lie structure of \(\mathcal{U}\). More precisely, we consider the subsequent condition on an additive map \(\varphi\) on a unital Banach algebra \(\mathcal{U}\) with a non-trivial idempotent \(p\): \[ x,y \in\mathcal{U},xy=p\Longrightarrow \varphi ([x,y])=[\varphi (x),y]=[x,\varphi (y)], \] and we show under certain conditions that \(\varphi (x)=cx+\mu (x)\) for all \(x\in\mathcal{U}\), where \(c\in Z(\mathcal{U}), \mu :\mathcal{U}\rightarrow Z(\mathcal{U}) (Z(\mathcal{U})\) is the center of \(\mathcal{U})\) is an additive map in which \(\mu ([x,y])=0\) for any \(x,y \in\mathcal{U}\) with \(xy=p\). The obtained results will be used for some Banach algebras, especially, for von Neumann algebras.

MSC:

47B47 Commutators, derivations, elementary operators, etc.
47B48 Linear operators on Banach algebras
46L10 General theory of von Neumann algebras
Full Text: DOI

References:

[1] Ashraf, M.; Ansari, MA, Multiplicative generalized Lie n-derivations of unital rings with idempotents, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 116, 92 (2022) · Zbl 1500.16038 · doi:10.1007/s13398-022-01233-5
[2] Behfar, R.; Ghahramani, H., Lie maps on triangular algebras without assuming unity, Mediterr. J. Math., 18, 1-28 (2021) · Zbl 1484.16048 · doi:10.1007/s00009-021-01836-z
[3] Benkovič, D., Lie triple derivations of unital algebras with idempotents, Linear Multilinear Algebra, 63, 141-165 (2015) · Zbl 1315.16037 · doi:10.1080/03081087.2013.851200
[4] Brešar, M., Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. R. Soc. Edinb. Sect. A., 137, 9-21 (2007) · Zbl 1130.16018 · doi:10.1017/S0308210504001088
[5] Fadaee, B.; Foner, A.; Ghahramani, H., Centralizers of Lie Structure of triangular algebras, Results Math. (2022) · Zbl 1517.16039 · doi:10.1007/s00025-022-01756-8
[6] Fadaee, B.; Ghahramani, H., Lie centralizers at the zero products on generalized matrix algebras, J. Algebra Appl. (2022) · Zbl 1509.47050 · doi:10.1142/S0219498822501651
[7] Fadaee, B.; Ghahramani, H.; Jing, W., Lie triple centralizers on generalized matrix algebras, Quaest. Math., 46, 281-300 (2023) · Zbl 07681681 · doi:10.2989/16073606.2021.2013972
[8] Foner, A.; Jing, W., Lie centralizers on triangular rings and nest algebras, Adv. Oper. Theory, 4, 342-350 (2019) · Zbl 1403.16038 · doi:10.15352/aot.1804-1341
[9] Fošner, A., Ghahramani, H., Wei, F.: Lie centralizers and generalized Lie derivations at zero products, Rocky Mountain J. Math, to appear · Zbl 07784533
[10] Ghahramani, H., Additive mappings derivable at nontrivial idempotents on Banach algebras, Linear Multilinear Algebra, 60, 725-742 (2012) · Zbl 1275.47080 · doi:10.1080/03081087.2011.628664
[11] Ghahramani, H.; Jing, W., Lie centralizers at zero products on a class of operator algebras, Ann. Funct. Anal., 12, 1-12 (2021) · Zbl 1521.47115 · doi:10.1007/s43034-021-00123-y
[12] Ghahramani, H.; Mokhtari, AH; Wei, F., Lie centralizers and commutant preserving maps on generalized matrix algebras, J. Algebra Appl. (2023) · Zbl 07797233 · doi:10.1142/S0219498824501068
[13] Jabeen, A., Lie (Jordan) centralizers on generalized matrix algebras, Commun. Algebra (2020) · Zbl 1464.16040 · doi:10.1080/00927872.2020.1797759
[14] Ji, P.; Qi, W., Characterizations of Lie derivations of triangular algebras, Linear Algebra Appl., 435, 1137-1146 (2011) · Zbl 1226.16026 · doi:10.1016/j.laa.2011.02.048
[15] Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, Vol. I, Academic Press, New York (1983), Vol. II, Academic Press, New York (1986) · Zbl 0518.46046
[16] Krylov, PA, Isomorphism of generalized matrix rings, Algebra Logic, 47, 258-262 (2008) · Zbl 1155.16302 · doi:10.1007/s10469-008-9016-y
[17] Liu, L.; Gao, K., Characterizations of Lie centralizers of triangular algebras, Linear Multilinear Algebra (2022) · Zbl 07730345 · doi:10.1080/03081087.2022.2104788
[18] Lu, F.; Jing, W., Characterizations of Lie derivations of B(X), Linear Algebra Appl., 432, 89-99 (2009) · Zbl 1188.47029 · doi:10.1016/j.laa.2009.07.026
[19] Liu, L., On nonlinear Lie centralizers of generalized matrix algebras, Linear Multilinear Algebra (2020) · Zbl 07596080 · doi:10.1080/03081087.2020.1810605
[20] Qi, XF; Hou, JC, Characterization of Lie derivations on prime rings, Comm. Algebra, 39, 3824-3835 (2011) · Zbl 1247.16043 · doi:10.1080/00927872.2010.512588
[21] Xiao, ZK; Wei, F., Commuting mappings of generalized matrix algebras, Linear Algebra Appl., 433, 2178-2197 (2010) · Zbl 1206.15016 · doi:10.1016/j.laa.2010.08.002
[22] Yuan, H.; Liu, Z., Lie n-centralizers of generalized matrix algebras, AIMS Math., 8, 14609-14622 (2023) · doi:10.3934/math.2023747
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.