×

Speiser meets Misiurewicz. (English) Zbl 1542.37039

Let \(f\) be an entire function. The set of singularities of the inverse of \(f\) consists of critical and asymptotic values in \(\mathbb{C}\) of \(f\), and is denoted by \(\mathrm{Sing}(f^{-1})\). We put, for some integer \(k,\) \[ \mathcal{P}( f ) := \overline{\bigcup_{n\ge0} f^n(\mathrm{Sing}( f^{-1}))} {\qquad \mathrm{and} \qquad}\mathcal{P}^k ( f ) :=\overline{\bigcup_{ n\ge k} f^n(\mathrm{Sing}( f^{-1}))}. \] As usual, let \(\mathcal{F}( f )\) and \(\mathcal{J} ( f )\) denote the Fatou and Julia sets of \(f\) respectively.
Definition. A transcendental entire function \(f\) satisfies the Misiurewicz condition if it is non-hyperbolic and satisfies the following conditions:
(i) \(\mathcal{P}( f ) \bigcap \mathcal{F}( f )\) is compact;
(ii ) There exists \(k \in \mathbb{N}\) such that \(\mathcal{P}^k ( f )\bigcap\mathcal{J} ( f )\) is hyperbolic.
It is clear by the definition above that Misiurewicz functions are post-singularly bounded and thus belong to the Eremenko-Lyubich class \[ \mathcal{B} := \{ f : \mathbb{C}\rightarrow\mathbb{C} \mbox{ transcendental and entire,\;} \mathrm{Sing}( f^{-1}) \mbox{\; is bounded} \}. \] We consider the Speiser class \[ \mathcal{S} := \{ f : \mathbb{C}\rightarrow\mathbb{C} \mbox{ transcendental and entire,\;} \mathrm{Sing}( f^{-1}) \mbox{\;is finite} \}. \] Functions in this class are often called Speiser functions. Let \(f, g \in \mathcal{S}\) be entire. We say that \(f\) and \(g\) are quasiconformally equivalent if there exist two quasiconformal maps \(\varphi,\psi:\mathbb{C}\to \mathbb{C}\) such that \(\varphi\circ f = g\circ\psi\). The parameter space \(\mathcal{M}_f\) in which \(f\in S\) lies is defined as the set of all functions \(g\) which are quasiconformally equivalent to \(f\) . The parameter space \(\mathcal{M}_f\) turns out to be a complex manifold of dimension \(\#\mathrm{Sing}( f^{-1}) + 2.\)
The authors prove the following results.
Theorem 1. Let \(f \in \mathcal{S}\) be Misiurewicz. Then \(f\) can be approximated by hyperbolic maps in \(\mathcal{M}_f\).
Theorem 2. Let \(f \in \mathcal{S}\) be Misiurewicz. Assume that \(\mathcal{J} ( f )\) has zero Lebesgue measure. Then \(f\) is a Lebesgue density point of hyperbolic maps in\(\mathcal{M}_f \).
Theorem 3. Let \(f\) be a Speiser function. Then the set of Misiurewicz parameters in \(\mathcal{M}_f\) has Lebesgue measure zero.

MSC:

37F31 Quasiconformal methods in holomorphic dynamics; quasiconformal dynamics
37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
37F46 Bifurcations; parameter spaces in holomorphic dynamics; the Mandelbrot and Multibrot sets
37F12 Critical orbits for holomorphic dynamical systems
37F15 Expanding holomorphic maps; hyperbolicity; structural stability of holomorphic dynamical systems
30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable
30D20 Entire functions of one complex variable (general theory)
30E10 Approximation in the complex plane

References:

[1] Aspenberg, M.; Bergweiler, W., Entire functions with Julia sets of positive measure, Math. Ann., 352, 1, 27-54, (2012) · Zbl 1243.37038 · doi:10.1007/s00208-010-0625-0
[2] Aspenberg, M.; Bylund, M.; Cui, W., Slowly recurrent Collet-Eckmann maps with non-empty Fatou set, Proc. Lond. Math. Soc., (2024) · Zbl 1537.37052 · doi:10.1112/plms.12574
[3] Aspenberg, M., Rational Misurewicz maps are rare, Commun. Math. Phys., 291, 3, 645-658, (2009) · Zbl 1185.37103 · doi:10.1007/s00220-009-0813-5
[4] Badeńska, A., Misiurewicz parameters in the exponential family, Math. Z., 268, 1-2, 291-303, (2011) · Zbl 1217.37043 · doi:10.1007/s00209-010-0671-z
[5] Baker, IN, Wandering domains in the iteration of entire functions, Proc. Lond. Math. Soc. (3), 49, 3, 563-576, (1984) · Zbl 0523.30017 · doi:10.1112/plms/s3-49.3.563
[6] Barański, K., Hausdorff dimension of hairs and ends for entire maps of finite order, Math. Proc. Camb. Philo. Soc., 145, 3, 719-737, (2008) · Zbl 1162.30013 · doi:10.1017/S0305004108001515
[7] Bergweiler, W.: Iteration of meromorphic functions. Bull. Am. Math. Soc. 29(2), 151-188 (1993) · Zbl 0791.30018
[8] Bergweiler, W.; Fagella, N.; Rempe-Gillen, L., Hyperbolic entire functions with bounded Fatou components, Comment. Math. Helv., 90, 4, 799-829, (2015) · Zbl 1338.37056 · doi:10.4171/CMH/371
[9] Bergweiler, W.; Haruta, M.; Kriete, H.; Meier, H.; Terglane, N., On the limit functions of iterates in wandering domains, Ann. Acad. Sci. Fenn. Ser. A I Math., 18, 2, 369-375, (1993) · Zbl 0793.30022
[10] Bishop, CJ, Constructing entire functions by quasiconformal folding, Acta Math., 214, 1, 1-60, (2015) · Zbl 1338.30016 · doi:10.1007/s11511-015-0122-0
[11] Bishop, CJ, Models for the Speiser class, Proc. Lond. Math. Soc. (3), 114, 5, 765-797, (2017) · Zbl 1381.30020 · doi:10.1112/plms.12025
[12] Bock, H.: Über das Iterationsverhalten meromorpher Funktionen auf der Juliamenge. PhD Thesis, Technical University Aachen (1998) · Zbl 0990.30016
[13] Bergweiler, W.; Rippon, PJ; Stallard, GM, Dynamics of meromorphic functions with direct or logarithmic singularities, Proc. Lond. Math. Soc. (3), 97, 2, 368-400, (2008) · Zbl 1174.37011 · doi:10.1112/plms/pdn007
[14] Carleson, L.; Jones, PW; Yoccoz, JC, Julia and John, Bol. Soc. Brasil Mat. (N.S.), 25, 1, 1-30, (1994) · Zbl 0804.30023 · doi:10.1007/BF01232933
[15] Cui, W., Lebesgue measure of escaping sets of entire functions, Ergodic Theory Dyn. Syst., 40, 1, 89-116, (2020) · Zbl 1433.37045 · doi:10.1017/etds.2018.31
[16] Dobbs, N., Perturbing Misiurewicz parameters in the exponential family, Commun. Math. Phys., 335, 2, 571-608, (2015) · Zbl 1311.30006 · doi:10.1007/s00220-015-2342-8
[17] Eremenko, A.; Lyubich, M., Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble), 42, 4, 989-1020, (1992) · doi:10.5802/aif.1318
[18] Goldberg, LR; Keen, L., A finiteness theorem for a dynamical class of entire functions, Ergodic Theory Dyn. Syst., 6, 2, 183-192, (1986) · Zbl 0657.58011 · doi:10.1017/S0143385700003394
[19] Graczyk, J.; Kotus, J., Światek: Non-recurrent meromorphic functions, Fund. Math., 182, 3, 269-281, (2004) · Zbl 1079.37041 · doi:10.4064/fm182-3-5
[20] Goldberg, AA; Ostrovskii, IV, Value Distribution of Meromorphic Functions. Translations of Mathematical Monographs, (2008), Providence: American Mathematical Society, Providence · Zbl 1152.30026 · doi:10.1090/mmono/236
[21] Hayman, WK, The local growth of power series: a survey of the Wiman-Valiron method, Can. Math. Bull, 17, 3, 317-358, (1974) · Zbl 0314.30021 · doi:10.4153/CMB-1974-064-0
[22] Mañé, R., On a theorem of Fatou, Bol. Soc. Brasil. Mat. (N.S.), 24, 1, 1-11, (1993) · Zbl 0781.30023 · doi:10.1007/BF01231694
[23] McMullen, CT, Complex Dynamics and Renormalization, (1994), Princeton: Princeton University Press, Princeton
[24] Misiurewicz, M., Absolutely continuous measures for certain maps of an interval, Inst. Hautes Études Sci. Publ. Math., 53, 1, 17-51, (1981) · Zbl 0477.58020 · doi:10.1007/BF02698686
[25] Mañé, R.; Sad, P.; Sullivan, D., On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4), 16, 2, 193-217, (1983) · Zbl 0524.58025 · doi:10.24033/asens.1446
[26] Qiu, W., Hausdorff dimension of the \(M\)-set of \(\lambda \exp (z)\), Acta Math. Sin. (N.S.), 10, 4, 362-368, (1994) · Zbl 0817.30011 · doi:10.1007/BF02582032
[27] Rempe, L., Rigidity of escaping dynamics for transcendental entire functions, Acta Math., 203, 2, 235-267, (2009) · Zbl 1226.37027 · doi:10.1007/s11511-009-0042-y
[28] Rempe-Gillen, L.; Sixsmith, DJ, Hyperbolic entire functions and the Eremenko-Lyubich class: class \(\cal{B}\) or not class \(\cal{B} \)?, Math. Z., 286, 3-4, 783-800, (2017) · Zbl 1392.37039 · doi:10.1007/s00209-016-1784-9
[29] Rempe, L., van Strien, S.: Absence of line fields and Mané’s theorem for nonrecurrent transcendental functions. Trans. Am. Math. Soc. 363(1), 203-228 (2011) · Zbl 1230.37056
[30] Sands, D., Misiurewicz maps are rare, Commun. Math. Phys, 197, 1, 109-129, (1998) · Zbl 0921.58015 · doi:10.1007/s002200050444
[31] Schubert, H.: Über die Hausdorff-Dimension der Juliamenge von Funktionen endlicher Ordnung. Dissertation, University of Kiel (2007)
[32] Shishikura, M., The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. Math. (2), 147, 2, 225-267, (1998) · Zbl 0922.58047 · doi:10.2307/121009
[33] Sixsmith, DJ, Dynamics in the Eremenko-Lyubich class, Conform. Geom. Dyn., 22, 185-224, (2018) · Zbl 1407.37068 · doi:10.1090/ecgd/324
[34] van Strien, S., Misiurewicz maps unfold generically (even if they are critically non-finite), Fund. Math., 163, 1, 39-54, (2000) · Zbl 0965.37038 · doi:10.4064/fm-163-1-39-54
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.