×

Generalized rotation sets and rotational entropy for circle maps. (English) Zbl 1540.37058

For a continuous circle map \(f:\mathbb{S}^1 \rightarrow \mathbb{S}^1\) of degree \(d\) with lifting \(F:\mathbb{R} \rightarrow \mathbb{R}\), the author defines the generalized rotation set \(\rho(F,x)\) of a point \(x \in \mathbb{R}\) and the generalized rotation set \(\rho_\Lambda(F)\) on an \(f\)-invariant subset \(\Lambda\) of \(\mathbb{S}^1\) (the generalized rotation set of \(F\) is defined as \(\rho(F)=\rho_{\mathbb{S}^1}(F)\)). When \(d=1\) these definitions give the rotation sets introduced by S. Newhouse et al. [Publ. Math., Inst. Hautes Étud. Sci. 57, 5–71 (1983; Zbl 0518.58031)].
The author’s first main result shows that for a continuous circle map \(f\) with lifting \(F\) such that \(\rho(F,x)\) is a closed subinterval of \(\rho(F)\) for all \(x \in \mathbb{R}\), \(\rho(F)\) is compact and connected. Moreover, there exist two recurrent points of \(f\) such that their generalized rotation numbers are the endpoints of \(\rho(F)\). These results were proven in the case \(d=1\) by R. Bamon et al. [Ergodic Theory Dyn. Syst. 4, 493–498 (1984; Zbl 0605.58027)].
The notion of rotational entropy \(h_r(f)\) was introduced by F. Botelho [Pac. J. Math. 151, No. 1, 1–20 (1991; Zbl 0703.58029)] for an annular map \(f\). The author of the paper reviewed here similarly defines \(h_r(f)\) for a continuous circle map \(f\) and proves that \(h_r(f)=0\).

MSC:

37E10 Dynamical systems involving maps of the circle
37E45 Rotation numbers and vectors
37B40 Topological entropy
Full Text: DOI

References:

[1] Bamon, R.; Malta, I.; Pacífico, M. J., Rotation intervals of endomorphisms of the circle, Ergod. Theory Dyn. Syst., 4, 493-498 (1984) · Zbl 0605.58027
[2] Botelho, F., Rotation sets for annulus homeomorphisms, Pac. J. Math., 132, 251-266 (1988) · Zbl 0622.58020
[3] Botelho, F., Rotational entropy for annulus endomorphisms, Pac. J. Math., 151, 1-19 (1991) · Zbl 0703.58029
[4] Geller, W.; Misiurewicz, M., Rotation and entropy, Trans. Am. Math. Soc., 351, 2927-2948 (1999) · Zbl 0918.54019
[5] Ito, R., Rotation sets are closed, Math. Proc. Camb. Philos. Soc., 89, 107-111 (1981) · Zbl 0484.58027
[6] Jiang, W. F.; Lian, Z. X.; Zhu, Y. J., Rotational entropy - a homotopy invariant for torus maps, J. Differ. Equ., 379, 862-883 (2024) · Zbl 07791831
[7] Katok, A.; Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems (1995), Cambridge University Press · Zbl 0878.58020
[8] Kwapisz, J.; Swanson, R., Asymptotic entropy, periodic orbits, and pseudo-Anosov maps, Ergod. Theory Dyn. Syst., 18, 425-439 (1998) · Zbl 0915.58087
[9] Llibre, J.; Mackay, R. S., Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity, Ergod. Theory Dyn. Syst., 11, 115-128 (1991) · Zbl 0699.58049
[10] Misiurewicz, M., Rotation theory, (Online Proceedings of the RIMS Workshop “Dynamical Systems and Applications: Recent Progress” (2006))
[11] Misiurewicz, M.; Ziemian, K., Rotation sets for maps of tori, J. Lond. Math. Soc., 2, 490-506 (1989) · Zbl 0663.58022
[12] Newhouse, S.; Palis, J.; Takens, F., Bifurcations and stability of families of diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 57, 5-71 (1983) · Zbl 0518.58031
[13] Poincaré, H., Sur les courbes définies par les équations différentielles, Oeuvres Completes, vol. 1, 137-158 (1952), Gauthier-Villars: Gauthier-Villars Paris
[14] Swanson, R., Periodic orbits and the continuity of rotation numbers, Proc. Am. Math. Soc., 117, 269-273 (1993) · Zbl 0768.58041
[15] Walters, P., An Introduction to Ergodic Theory, Graduate Texts in Mathematics, vol. 79 (1982), Springer-Verlag: Springer-Verlag New York, Heidelberg, Berlin · Zbl 0475.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.