×

Production setup-sequencing and lot-sizing at an animal nutrition plant through ATSP subtour elimination and patching. (English) Zbl 1184.90058

Summary: This paper considers the usefulness of a production lot sizing and scheduling model at an animal nutrition plant with sequence-dependent setup times. The model covers multiple periods and is based on the asymmetric travelling salesman problem (ATSP). It is applied initially to the case where the setup state is zeroed between periods, and then revised to model the carryover of the setup state from one period to the next. An iterative solution procedure based on subtour elimination is applied, and then enhanced by the inclusion of a subtour patching procedure. Case-based tests with actual plant data show that the subtour elimination is practicably fast where the setup state is zeroed between periods, but needs the patching procedure when the setup state is preserved, as is the situation at the plant. In this latter case, the subtour elimination and patching can be very fast, showing the method’s viability for operational lot sizing and sequencing in animal nutrition plants of the kind studied. Tests on perturbed plant data show that further algorithmic development is needed to tackle certain challenging variants found in other plants.

MSC:

90B35 Deterministic scheduling theory in operations research
90B30 Production models

Software:

CPLEX; AMPL
Full Text: DOI

References:

[1] Araújo, S. A., Arenales, M. N., & Clark, A. R. (2007). Joint rolling-horizon scheduling of materials processing and lot-sizing with sequence-dependent setups. Journal of Heuristics, 13(4), 337–358. · doi:10.1007/s10732-007-9011-9
[2] Araújo, S. A., Arenales, M. N., & Clark, A. R. (2008). Lot-sizing and furnace scheduling in small foundries. Computers and Operations Research, 35, 916–932. · Zbl 1278.90180 · doi:10.1016/j.cor.2006.05.010
[3] Arosio, M., & Sianesi, A. (1993). A heuristic algorithm for master production scheduling generation with finite capacity and sequence dependent setups. International Journal of Production Research, 31, 531–553. · doi:10.1080/00207549308956743
[4] Buriol, L., Franca, P. M., & Moscato, P. (2004). A new memetic algorithm for the asymmetric traveling salesman problem. Journal of Heuristics, 10(5), 483–506. · Zbl 1062.90052 · doi:10.1023/B:HEUR.0000045321.59202.52
[5] Carpaneto, G., Dell’Amico, M., & Toth, P. (1995). Exact solution of large scale asymmetric travelling salesman problems. ACM Transactions on Mathematical Software, 21(4), 394–409. · Zbl 0887.65058 · doi:10.1145/212066.212081
[6] Cirasella, J., Johnson, D. S., McGeoch, L. A., & Zhang, W. (2001). The asymmetric traveling salesman problem: Algorithms, instance generators, and tests. In Springer lecture notes in computer science (Vol. 2153, pp. 32–59). Berlin: Springer. · Zbl 1010.68848
[7] Clark, A. R. (2003). Optimization approximations for capacity constrained material requirements planning. International Journal of Production Economics, 84(2), 115–131. · doi:10.1016/S0925-5273(02)00400-0
[8] Clark, A. R., & Clark, S. J. (2000). Rolling-horizon lot-sizing when setup times are sequence-dependent. International Journal of Production Research, 38(10), 2287–2308. · Zbl 0973.90517 · doi:10.1080/00207540050028106
[9] Dillenberger, C., Escudero, L. F., Wollensak, A., & Zhang, W. (1994). On practical resource allocation for production planning and scheduling with different setup products. European Journal of Operational Research, 5(2), 275–286. · Zbl 0806.90055 · doi:10.1016/0377-2217(94)90074-4
[10] Drexl, A., & Kimms, A. (1997). Lot sizing and scheduling–survey and extensions. European Journal of Operational Research, 99, 221–235. · Zbl 0923.90067 · doi:10.1016/S0377-2217(97)00030-1
[11] Ferreira, D., Morabito, R., & Rangel, S. (2009). Solution approaches for the soft drink integrated production lot sizing and scheduling problem. European Journal of Operational Research, 196, 697–706. · Zbl 1163.90832 · doi:10.1016/j.ejor.2008.03.035
[12] Fleischmann, B., & Meyr, H. (1997). The general lotsizing and scheduling problem. OR Spektrum, 19(1), 11–21. · Zbl 0892.90055 · doi:10.1007/BF01539800
[13] Fourer, R., Gay, D. M., & Kernighan, B. W. (2003). AMPL–a modelling language for mathematical programming (2nd Ed.). N. Scituate: Duxbury Press. http://www.ampl.com/ .
[14] Frieze, A. M., & Dyer, M. E. (1990). On a patching algorithm for the random asymmetric travelling salesman problem. Mathematical Programming, 46, 361–378. · Zbl 0742.90064 · doi:10.1007/BF01585751
[15] Frieze, A. M., Karp, R. M., & Reed, B. (1995). When is the assignment bound tight for the asymmetric traveling-salesman problem? SIAM Journal on Computing, 24(3), 484–493. · Zbl 0833.90096 · doi:10.1137/S0097539792235384
[16] Glover, F., Gutin, G., Yeo, A., & Zverovich, A. (2001). Construction heuristics for the asymmetric tsp. European Journal of Operational Research, 129, 555–568. · Zbl 1125.90402 · doi:10.1016/S0377-2217(99)00468-3
[17] Gupta, D., & Magnusson, T. (2005). The capacitated lot-sizing and scheduling problem with sequence-dependent setup costs and setup times. Computers and Operations Research, 32(4), 727–747. · Zbl 1071.90534 · doi:10.1016/j.cor.2003.08.014
[18] Ilog (2004). CPLEX 9.1 user’s manual, ILOG S.A. www.cplex.com .
[19] Jans, R., & Degraeve, Z. (2008). Modeling industrial lot sizing problems, a review. International Journal of Production Research, 46(6). · Zbl 1160.90407
[20] Johnson, D. S., Gutin, G., McGeoch, L. A., Yeo, A., Zhang, W., & Zverovich, A. (2002). Experimental analysis of heuristics for the asymmetric travelling salesman problem–algorithms, instance generators and tests. In G. Gutin & A. P. Punnen (Eds.), The traveling salesman problem and its variations. Dordrecht: Kluwer.
[21] Junger, M., Reinelt, G., & Rinaldi, G. (1995). The traveling salesman problem. In M. O. Ball, T. L. Magnanti, C. L. Monma, & G. L. Nemhauser (Eds.), Handbooks in operations research and management science : Vol. 7. Network models (pp. 225–330). Amsterdam: North Holland. Chap. 4. · Zbl 0832.90118
[22] Kang, S., Malik, K., & Thomas, L. J. (1999). Lotsizing and scheduling on parallel machines with sequence-dependent setup costs. Management Science, 45(2), 273–289. · Zbl 1231.90201 · doi:10.1287/mnsc.45.2.273
[23] Karimi, B., Fatemi Ghomia, S. M. T., & Wilson, J. M. (2003). The capacitated lot sizing problem, a review of models and algorithms. Omega, 31, 365–378. · doi:10.1016/S0305-0483(03)00059-8
[24] Karp, R. M. (1979). A patching algorithm for the nonsymmetric traveling-salesman problem. SIAM Journal on Computing, 8(4), 561–573. · Zbl 0427.90064 · doi:10.1137/0208045
[25] Karp, R. M., & Steele, J. M. (1985). Probabilistic analysis of heuristics. In E. L. Lawler, J. K. Lenstra, A. H. G. Rinnoy Kan, & D. B. Shmoys (Eds.), The traveling salesman problem–a guided tour of combinatorial optimization. Chichester: Wiley. · Zbl 0582.90100
[26] Laporte, G. (1994). The travelling salesman problem, an overview of exact and approximate algorithms. European Journal of Operational Research, 59, 231–247. · Zbl 0760.90089 · doi:10.1016/0377-2217(92)90138-Y
[27] Lawler, E. L., Lenstra, J. K., Rinnoy Kan, A. H. G., & Shmoys, D. B. (1985). The traveling salesman problem–a guided tour of combinatorial optimization. Chichester: Wiley. · Zbl 0562.00014
[28] Luche, J. R. D., Morabito, R., & Pureza, V. (2009). Combining process selection and lot sizing models for the production scheduling of electrofused grains. Asia-Pacific Journal of Operations Research, 26(3). · Zbl 1176.90173
[29] Meyr, H. (2000). Simultaneous lot-sizing and scheduling by combining local search with dual optimization. European Journal of Operational Research, 120, 311–326. · Zbl 0943.90037 · doi:10.1016/S0377-2217(99)00159-9
[30] Nahmias, S. (1995). Production and operations analysis. Homewood: Irwin.
[31] Orman, A. J., & Williams, H. P. (2004). A survey of different integer programming formulations of the travelling salesman problem (Working paper LSEOR 04.67). London School of Economics, Deptartment of Operational Research, LSE, London.
[32] Pochet, Y., & Wolsey, L. A. (2006). Production planning by mixed integer programming. Berlin: Springer. · Zbl 1102.90039
[33] Salomon, M., Solomon, M., Van Wassenhove, L. N., & Dumas, Y. (1997). Solving the discrete lot sizing and scheduling problem with sequence dependent set-up costs and set-up times using the travelling salesman problem with time windows. European Journal of Operational Research, 100, 494–513. · Zbl 0918.90087 · doi:10.1016/S0377-2217(96)00020-3
[34] Smith-Daniels, V. L., & Smith-Daniels, D. E. (1986). A mixed integer programming model for lot sizing and sequencing packaging lines in the process industries. IIE Transactions, 18(3), 278–285. · doi:10.1080/07408178608974705
[35] Toledo, C. F. M., França, P. M., Morabito, R., & Kimms, A. (2009). A multi-population genetic algorithm to solve the synchronized and integrated two-level lot-sizing and scheduling problem. International Journal of Production Research, 47(11), 3097–3119. · Zbl 1198.90211 · doi:10.1080/00207540701675833
[36] Toso, E. A. V. (2008). Dimensionamento e seqüenciamento de lotes de produção na indústria de suplementos para nutrição animal. PhD thesis, Department of Production Engineering, Universidade Federal de São Carlos, Brazil. Complete text and data online at http://200.136.241.56/htdocs/tedeSimplificado/tde_busca/arquivo.php?codArquivo=1924 .
[37] Toso, E. A. V., Morabito, R., & Clark, A. R. (2009). Lot-sizing and sequencing optimisation at an animal-feed plant. Computers and Industrial Engineering, 57(3), 813–821. · doi:10.1016/j.cie.2009.02.011
[38] Wolsey, L. A. (1995). Progress with single-item lot-sizing. European Journal of Operational Research, 86, 395–401. · Zbl 0914.90105 · doi:10.1016/0377-2217(94)00341-9
[39] Wolsey, L. A. (1998). Integer programming. New York: Wiley. · Zbl 0930.90072
[40] Zhang, W. (1997). A note on the complexity of the asymmetric travelling salesman problem. Operations Research Letters, 20, 31–38. · Zbl 0892.90177 · doi:10.1016/S0167-6377(96)00037-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.