×

Remarks on anomalous symmetries of \(C^*\)-algebras. (English) Zbl 1487.18010

A twisted action of a group \(G\) on a unital \(C^*\)-algebra \(A\) is given by automorphisms \(\alpha_g\) and unitaries \(u_{g,h}\) for \(g,h\in G\) such that \(u_{g,h} \alpha_g (\alpha_h(a)) u_{g,h}^* = \alpha_{g h}(a)\) for all \(g,h\in G\), \(a\in A\), and \(u\) satisfies the cocycle condition \(u_{gh,k}^* u_{g,hk} \alpha_g(u_{hk}) u_{g,h}^* = 1\) for all \(g,h,k\in G\); the latter product of unitaries is always central in \(A\). More generally, one may ask the product above to be equal to a given \(3\)-cocycle \(\omega(g,h,k)\) on \(G\) with values in \(U(1)\) or the centre of \(A\). This is called an anomalous action of \(G\) on \(A\). Anomalous actions appear naturally in the study of \(C^*\)-tensor categories and their actions on \(C^*\)-algebras. They may also be rewritten as actions of \(2\)-groups or crossed modules.
This article studies the existence of such anomalous actions on some classes of \(C^*\)-algebras, namely, commutative \(C^*\)-algebras and their stabilisations, Roe \(C^*\)-algebras, and the quotients of Roe \(C^*\)-algebras by the ideal of compact operators. On the one hand, some \(C^*\)-algebras admit no anomalous actions at all. Namely, this is true for the Roe \(C^*\)-algebra of any discrete metric space of bounded geometry; for \(C(X)\) for a connected, locally path connected compact space \(X\) provided \(H^1(X,\mathbb Z)\) vanishes; and it remains true for the \(C^*\)-stabilisation \(C(X) \otimes \mathbb K\) if, in addition, to the assumptions above, all complex line bundles over \(X\) are trivial. On the other hand, for any \(n\ge 2\), group \(G\) and 3-cocycle \(\omega\), there is a connected closed \(n\)-manifold \(M\) and an \(\omega\)-anomalous action on \(C(M)\otimes \mathbb K\). In addition, there is a discrete metric space \(X\) with bounded geometry and property A and an \(\omega\)-anomalous action on the quotient of the Roe \(C^*\)-algebra of \(X\) by the ideal of compact operators.
Another interesting result in the article says that if a \(C^*\)-algebra admits an anomalous action with a cocycle that is not a coboundary, then the induced action cannot fix any pure state. For instance, if the \(C^*\)-algebra admits a unique trace, then any automorphism must fix it, and so the \(C^*\)-algebra cannot admit any anomalous action.
A key step to prove existence of anomalous actions is a construction of anomalous actions on certain twisted crossed products. This is reminiscent of a construction of crossed module actions on untwisted crossed products in Example 8 in [A. Buss et al., Math. Ann. 352, No. 1, 73–97 (2012; Zbl 1242.46075)].

MSC:

18G40 Spectral sequences, hypercohomology
46L05 General theory of \(C^*\)-algebras
18M20 Fusion categories, modular tensor categories, modular functors
46L55 Noncommutative dynamical systems
46L40 Automorphisms of selfadjoint operator algebras
46L60 Applications of selfadjoint operator algebras to physics

Citations:

Zbl 1242.46075

Software:

MathOverflow

References:

[1] Aaserud, AN; Evans, DE, Realizing the Braided Temperley-Lieb-Jones C*-Tensor Categories as Hilbert C*-Modules, Commun. Math. Phys., 380, 1, 103-130 (2020) · Zbl 1467.46056 · doi:10.1007/s00220-020-03729-w
[2] Alicki, R., Fannes, M., Horodecki, M.: A statistical mechanics view on Kitaev’s proposal for quantum memories. J. Phys. A 40(24), 6451-6467 (2007) · Zbl 1113.81015
[3] Braga, B.M., Farah, A., Vignati, I.: Uniform Roe coronas, arXiv preprint, arXiv:1810.07789 (2018) · Zbl 1476.19005
[4] Bouwknegt, P., Hannabuss, K.C., Mathai, V.: \(C^*\)-algebras in tensor categories, Motives, quantum field theory, and pseudodifferential operators, Clay Math. Proc., vol. 12, Amer. Math. Soc., Providence, RI, 2010, pp. 127-165 · Zbl 1221.46073
[5] Blackadar, B.: \(K\)-theory for operator algebras, second ed., Mathematical Sciences Research Institute Publications, vol. 5, Cambridge University Press, Cambridge (1998) · Zbl 0913.46054
[6] Buss, A.; Meyer, R.; Zhu, C., A higher category approach to twisted actions on \(C^*\)-algebras, Proc. Edinb. Math. Soc., 56, 2, 387-426 (2013) · Zbl 1276.46055 · doi:10.1017/S0013091512000259
[7] Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics. 2, second ed., Texts and Monographs in Physics, Springer, Berlin (1997), Equilibrium states. Models in quantum statistical mechanics · Zbl 0903.46066
[8] Brown, K.S.: Cohomology of Groups, Graduate Texts in Mathematics, vol. 87. Springer, New York (1982) · Zbl 0584.20036
[9] Baez, J.C., Shulman, M.: Lectures on \(n\)-categories and cohomology, Towards higher categories, IMA Vol. Math. Appl., vol. 152, Springer, New York (2010), pp. 1-68 · Zbl 1191.18008
[10] Braga, B.M., Vignati, A.: A gelfand-type duality for coarse metric spaces with property \(a\), arXiv preprint arXiv:2007.10499 (2018)
[11] Carey, AL, The origin of three-cocycles in quantum field theory, Phys. Lett. B, 194, 2, 267-270 (1987) · doi:10.1016/0370-2693(87)90540-5
[12] Chamseddine, AH; Connes, A., The spectral action principle, Commun. Math. Phys., 186, 3, 731-750 (1997) · Zbl 0894.58007 · doi:10.1007/s002200050126
[13] Carey, AL; Grundling, H.; Raeburn, I.; Sutherland, C., Group actions on \(C^*\)-algebras, \(3\)-cocycles and quantum field theory, Commun. Math. Phys., 168, 2, 389-416 (1995) · Zbl 0823.46064 · doi:10.1007/BF02101555
[14] Connes, A., Outer conjugacy classes of automorphisms of factors, Ann. Sci. École Norm. Sup., 8, 3, 383-419 (1975) · Zbl 0342.46052 · doi:10.24033/asens.1295
[15] Connes, A., Periodic automorphisms of the hyperfinite factor of type II1, Acta Sci. Math. (Szeged), 39, 1-2, 39-66 (1977) · Zbl 0382.46027
[16] Connes, A., Noncommutative geometry (1994), San Diego, CA: Academic Press Inc, San Diego, CA · Zbl 0818.46076
[17] Chen, X.; Wang, Q., Notes on ideals of Roe algebras, Q. J. Math., 52, 4, 437-446 (2001) · Zbl 1020.46012 · doi:10.1093/qjmath/52.4.437
[18] Evans, D.E., Gannon, T.: Reconstruction and local extensions for twisted group doubles, and permutation orbifolds, arXiv preprint, arXiv:1804.11145 (2018)
[19] Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories, Mathematical Surveys and Monographs, vol. 205. American Mathematical Society, Providence, RI (2015) · Zbl 1365.18001
[20] Evington, S., Pacheco, S.G.: Anomalous symmetries of classifiable C*-algebras, (2021). arXiv:2105.05587
[21] Eilenberg, S.; MacLane, S., Cohomology theory in abstract groups. I., Ann. Math., 48, 51-78 (1947) · Zbl 0029.34001 · doi:10.2307/1969215
[22] Eilenberg, S., MacLane, S.: Cohomology theory in abstract groups. II. Group extensions with a non-Abelian kernel. Ann. Math. 48, 326-341 (1947) · Zbl 0029.34101
[23] Ewert, E.E., Meyer, R.: Coarse geometry and topological phases. Commun. Math. Phys. 366(3), 1069-1098 (2019) · Zbl 1481.46076
[24] Etingof, P.; Nikshych, D.; Ostrik, V., On fusion categories, Ann. Math., 162, 2, 581-642 (2005) · Zbl 1125.16025 · doi:10.4007/annals.2005.162.581
[25] Guionnet, A., Jones, V.F., Shlyakhtenko, D.: Random matrices, free probability, planar algebras and subfactors, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI (2010), pp. 201-239 · Zbl 1219.46057
[26] Guentner, E.; Kaminker, J., Addendum to: Exactness and the Novikov conjecture, Topology, 41, 2, 419-420 (2002) · doi:10.1016/S0040-9383(00)00037-9
[27] Guentner, E.; Kaminker, J., Exactness and the Novikov conjecture, Topology, 41, 2, 411-418 (2002) · Zbl 0992.58002 · doi:10.1016/S0040-9383(00)00036-7
[28] Green, P., \(C^*\)-algebras of transformation groups with smooth orbit space, Pacific J. Math., 72, 1, 71-97 (1977) · Zbl 0374.46047 · doi:10.2140/pjm.1977.72.71
[29] Giorgetti, L., Yuan, W.: Realization of rigid \(C^\ast \)-tensor categories via Tomita bimodules. J. Operator Theory 81(2), 433-479 (2019) · Zbl 1449.46048
[30] Hatcher, A., Algebraic Topology (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 1044.55001
[31] Hatcher, A.: Vector bundles and k-theory (2017)
[32] Hartglass, M., Hernández, P., Roberto: Realizations of rigid \(\rm C^*\)-tensor categories as bimodules over GJS \(\rm C^*\)-algebras. J. Math. Phys. 61(8), 081703 (2020) · Zbl 1467.46050
[33] HJRW, finite generated group realized as fundamental group of manifolds. MathOverflow, https://mathoverflow.net/q/15414 (version: 2017-04-13)
[34] Huang, H-L; Liu, G.; Ye, Y., The braided monoidal structures on a class of linear Gr-categories, Algebr. Represent. Theory, 17, 4, 1249-1265 (2014) · Zbl 1305.18022 · doi:10.1007/s10468-013-9445-8
[35] Henriques, A., Penneys, D.: Bicommutant categories from fusion categories. Selecta Math. (N.S.) 23(3), 1669-1708 (2017) · Zbl 1434.18007
[36] Higginbotham, L., Weighill, T.: Coarse quotients by group actions and the maximal Roe algebra. J. Topol. Anal. 11(4), 875-907 (2019) · Zbl 1482.46092
[37] Izumi, M., Subalgebras of infinite \(C^*\)-algebras with finite Watatani indices. I. Cuntz algebras, Commun. Math. Phys., 155, 1, 157-182 (1993) · Zbl 0803.46066 · doi:10.1007/BF02100056
[38] Izumi, M., Subalgebras of infinite \(C^*\)-algebras with finite Watatani indices. II. Cuntz-Krieger algebras, Duke Math. J., 91, 3, 409-461 (1998) · Zbl 0949.46023 · doi:10.1215/S0012-7094-98-09118-9
[39] Jones, V.F.R.: An invariant for group actions. Algèbres d’opérateurs (Sém., Les Plans-sur-Bex, : Lecture Notes in Math., vol. 725. Springer, Berlin 1979, 237-253 (1978) · Zbl 0497.46044
[40] Jones, V.F.R.: Actions of finite groups on the hyperfinite type \({\rm II}_1\) factor. Mem. Amer. Math. Soc. 28 237 (1980) · Zbl 0454.46045
[41] Jones, C.: Penneys, D.: Operator algebras in rigid \(\rm C^*\)-tensor categories. Commun. Math. Phys. 355(3), 1121-1188 (2017) · Zbl 1397.46044
[42] Jones, C., Penneys, D.: Realizations of algebra objects and discrete subfactors. Adv. Math. 350, 588-661 (2019) · Zbl 1426.46041
[43] Kubota, Y., Controlled topological phases and bulk-edge correspondence, Commun. Math. Phys., 349, 2, 493-525 (2017) · Zbl 1357.82013 · doi:10.1007/s00220-016-2699-3
[44] Longo, R.; Roberts, JE, A theory of dimension, K-Theory, 11, 2, 103-159 (1997) · Zbl 0874.18005 · doi:10.1023/A:1007714415067
[45] Lyndon, R.C., Schupp, P.E.: Combinatorial group theory, Classics in Mathematics. Springer, Berlin (2001). (Reprint of the 1977 edition) · Zbl 0997.20037
[46] MacLane, S.: Cohomology theory in abstract groups. III. Operator homomorphisms of kernels. Ann. of Math. 50, 736-761 (1949) · Zbl 0039.25703
[47] Meyer, R.: Actions of higher categories on \(\rm C^*\)-algebras. Topics in noncommutative geometry, Clay Math. Proc., vol. 16, Amer. Math. Soc., Providence, RI (2012), pp. 75-92 · Zbl 1316.46049
[48] Mathai, V., Rosenberg, J.: \(T\)-duality for torus bundles with \(H\)-fluxes via noncommutative topology. Commun. Math. Phys. 253(3), 705-721 (2005) · Zbl 1078.58006
[49] Müger, M.: From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories. J. Pure Appl. Algebra 180(1-2), 81-157 (2003) · Zbl 1033.18002
[50] Ocneanu, A.: Quantized groups, string algebras and Galois theory for algebras, Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge (1988) pp. 119-172 · Zbl 0696.46048
[51] Ostrik, V., Module categories over the Drinfeld double of a finite group, Int. Math. Res. Not., 27, 1507-1520 (2003) · Zbl 1044.18005 · doi:10.1155/S1073792803205079
[52] Popa, S., An axiomatization of the lattice of higher relative commutants of a subfactor, Invent. Math., 120, 3, 427-445 (1995) · Zbl 0831.46069 · doi:10.1007/BF01241137
[53] Phillips, J., Raeburn, I.: Automorphisms of \(C^{\ast } \)-algebras and second Čech cohomology. Indiana Univ. Math. J. 29(6), 799-822 (1980) · Zbl 0475.46047
[54] Roe, J.: Coarse cohomology and index theory on complete Riemannian manifolds. Mem. Amer. Math. Soc. 104 (1993), no. 497, x+90 · Zbl 0780.58043
[55] Roe, J., Lectures on Coarse Geometry, University Lecture Series (2003), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1042.53027
[56] Rosenberg, J.: In: Topology, \(C^ast \)-algebras, and string duality, CBMS Regional Conference Series in Mathematics, vol. 111. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2009) · Zbl 1208.81172
[57] Raeburn, I.; Sims, A.; Williams, DP, Twisted actions and obstructions in group cohomology, \(C^*\)-algebras (Münster, Springer. Berlin, 2000, 161-181 (1999) · Zbl 0984.46044
[58] Sakai, S.: Operator algebras in dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 41, Cambridge University Press, Cambridge, (1991), The theory of unbounded derivations in \(C^*\)-algebras · Zbl 0743.46078
[59] Sutherland, C.E.: Cohomology and extensions of von Neumann algebras. I, II, Publ. Res. Inst. Math. Sci. 16(1), 105-133 (1980) · Zbl 0462.46048
[60] Spakula, J.; Willett, R., On rigidity of Roe algebras, Adv. Math., 249, 289-310 (2013) · Zbl 1295.46051 · doi:10.1016/j.aim.2013.09.006
[61] Weibel, C.A.: An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994) · Zbl 0797.18001
[62] Williams, D.P.: Crossed products of \(C{^\ast }\)-algebras, Mathematical Surveys and Monographs, vol. 134. American Mathematical Society, Providence, RI (2007) · Zbl 1119.46002
[63] Yuan, W.: Rigid \({\rm C}^*\)-tensor categories and their realizations as Hilbert \({\rm C}^*\)-bimodules. Proc. Edinb. Math. Soc. 62(2), 367-393 (2019) · Zbl 1412.81149
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.