×

Some \(C^{\ast}\)-algebras associated to quantum gauge theories. (English) Zbl 1217.81126

Summary: Algebras associated with quantum electrodynamics and other gauge theories share some mathematical features with \(T\)-duality. Exploiting this different perspective and some category theory, the full algebra of fermions and bosons can be regarded as a braided Clifford algebra over a braided commutative boson algebra, sharing much of the structure of ordinary Clifford algebras.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
46L08 \(C^*\)-modules
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
15A66 Clifford algebras, spinors

References:

[1] Wurzbacher, Infinite-Dimensional Kaehler Manifolds (2001)
[2] DOI: 10.1007/s00220-004-1159-7 · Zbl 1078.58006 · doi:10.1007/s00220-004-1159-7
[3] DOI: 10.1017/CBO9780511564024 · Zbl 0964.81052 · doi:10.1017/CBO9780511564024
[4] DOI: 10.1142/S0129055X09003670 · Zbl 1183.81088 · doi:10.1142/S0129055X09003670
[5] Gracia-Bondia, Elements of Noncommutative Geometry (2001) · doi:10.1007/978-1-4612-0005-5
[6] Fredenhagen, Quantum Field Theory: Where We Are. Approaches to Fundamental Physics pp 61– (2007)
[7] Epstein, Ann. Inst. H. Poincaré Sect. A (N.S.) 19 pp 211– (1973)
[8] DOI: 10.1023/B:MATH.0000043318.42556.03 · Zbl 1079.43003 · doi:10.1023/B:MATH.0000043318.42556.03
[9] DOI: 10.1103/PhysRev.75.486 · Zbl 0032.23702 · doi:10.1103/PhysRev.75.486
[10] DOI: 10.1063/1.523318 · Zbl 0348.46056 · doi:10.1063/1.523318
[11] Dirac, Principles of Quantum Mechanics (1958)
[12] Carey, Ann. Inst. H. Poincaré 40 pp 141– (1984)
[13] DOI: 10.1007/s002200050499 · Zbl 0932.16038 · doi:10.1007/s002200050499
[14] DOI: 10.1007/BF02101555 · Zbl 0823.46064 · doi:10.1007/BF02101555
[15] DOI: 10.1007/s00220-005-1501-8 · Zbl 1115.46063 · doi:10.1007/s00220-005-1501-8
[16] DOI: 10.1063/1.531054 · Zbl 0847.17019 · doi:10.1063/1.531054
[17] DOI: 10.1007/s10468-009-9141-x · Zbl 1180.18002 · doi:10.1007/s10468-009-9141-x
[18] Ashtekar, Knots and Quantum Gravity (1994)
[19] Ashtekar, Lectures on Non-perturbative Canonical Gravity (1991) · doi:10.1142/1321
[20] Abramsky, Proceedings of the 19th IEEE Conference on Logic in Computer Science (LiCS’04) (2004)
[21] DOI: 10.1142/S0129055X98000227 · Zbl 0917.46061 · doi:10.1142/S0129055X98000227
[22] DOI: 10.2307/1970397 · Zbl 0178.49301 · doi:10.2307/1970397
[23] Schwinger (ed.), Selected Papers on Quantum Electrodynamics (1958) · Zbl 0088.22203
[24] Schweber, QED and the Men Who Made it (1994)
[25] Scharf, Finite Quantum Electrodynamics (1989) · Zbl 0844.53052 · doi:10.1007/978-3-662-01187-4
[26] Robinson, J. Lond. Math. Soc. (2) 49 pp 463– (1994) · Zbl 0840.15021 · doi:10.1112/jlms/49.3.463
[27] DOI: 10.1016/0001-8708(74)90068-1 · Zbl 0284.46040 · doi:10.1016/0001-8708(74)90068-1
[28] Plymen, Spinors in Hilbert Space (1994)
[29] DOI: 10.1016/0022-1236(75)90004-X · Zbl 0295.46088 · doi:10.1016/0022-1236(75)90004-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.