×

Exploring solitary waves and nonlinear dynamics in the fractional Chaffee-Infante equation: a study beyond conventional diffusion models. (English) Zbl 07916590

Summary: The current study examines the (2 + 1)-dimensional fractional Chaffee-Infante (FCI) model, which is a nonlinear evolution equation that characterizes the processes of pattern generation, reaction-diffusion, and nonlinear wave propagation. The construction of analytical solutions involves the use of analytical methods, namely the Khater III and improved Kudryashov schemes. The He’s Variational Iteration method is employed as a numerical approach to validate the accuracy of the obtained solutions. The main objective of this study is to get novel analytical and numerical solutions for the FCI model, with the intention of gaining a deeper understanding of the system’s dynamics and its possible implications in the fields of fluid mechanics, plasma physics, and optical fiber communications. The study makes a valuable contribution to the area of nonlinear science via the use of innovative analytical and numerical methodologies in the FCI model. This research enhances our comprehension of pattern creation, reaction-diffusion phenomena, and the propagation of nonlinear waves in diverse physical scenarios.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q53 KdV equations (Korteweg-de Vries equations)
35Q55 NLS equations (nonlinear Schrödinger equations)
35Q51 Soliton equations
76B25 Solitary waves for incompressible inviscid fluids
78A60 Lasers, masers, optical bistability, nonlinear optics
35C08 Soliton solutions
35B36 Pattern formations in context of PDEs
35R11 Fractional partial differential equations
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
Full Text: DOI

References:

[1] Attia, RAM; Alfalqi, SH; Alzaidi, JF; Vokhmintsev, A.; Khater, MMA, Transcending classical diffusion models: nonlinear dynamics and solitary waves in the fractional Chaffee-Infante equation, Opt. Quant. Electron., 56, 6, 1033, 2024 · doi:10.1007/s11082-024-06824-7
[2] Arshed, S.; Akram, G.; Sadaf, M.; Irfan, M.; Inc, M., Extraction of exact soliton solutions of (2+1)-dimensional Chaffee-Infante equation using two exact integration techniques, Opt. Quant. Electron., 56, 6, 988, 2024 · doi:10.1007/s11082-024-06470-z
[3] Zhu, C.; Al-Dossari, M.; Rezapour, S.; Gunay, B., On the exact soliton solutions and different wave structures to the (2+1) dimensional Chaffee-Infante equation, Results Phys., 57, 107431, 2024 · doi:10.1016/j.rinp.2024.107431
[4] Tetik, D.; Akbulut, A.; çelik, N., Applications of two kinds of Kudryashov methods for time fractional (2 + 1) dimensional Chaffee-Infante equation and its stability analysis, Opt. Quant. Electron., 56, 4, 640, 2024 · doi:10.1007/s11082-023-06271-w
[5] Faridi, WA; Yusuf, A.; Akgül, A.; Tawfiq, FMO; Tchier, F.; Al-deiakeh, R.; Sulaiman, TA; Hassan, AM; Ma, W-X, The computation of Lie point symmetry generators, modulational instability, classification of conserved quantities, and explicit power series solutions of the coupled system, Results Phys., 54, 107126, 2023 · doi:10.1016/j.rinp.2023.107126
[6] Sadaf, M.; Arshed, S.; Akram, G.; Ali, MR; Bano, I., Analytical investigation and graphical simulations for the solitary wave behavior of Chaffee-Infante equation, Results Phys., 54, 107097, 2023 · doi:10.1016/j.rinp.2023.107097
[7] Günhan Ay, N.; Yaşar, E., The residual symmetry, Bäcklund transformations, CRE integrability and interaction solutions: (2+1)-dimensional Chaffee-Infante equation, Commun. Theor. Phys., 75, 11, 115004, 2023 · Zbl 1537.35304 · doi:10.1088/1572-9494/acf8b6
[8] Sebogodi, MC; Muatjetjeja, B.; Adem, AR, Traveling wave solutions and conservation laws of a generalized Chaffee-Infante equation in (1+3) dimensions, Universe, 9, 5, 224, 2023 · doi:10.3390/universe9050224
[9] Mahmood, A.; Abbas, M.; Akram, G.; Sadaf, M.; Riaz, MB; Abdeljawad, T., Solitary wave solution of (2+1)-dimensional Chaffee-Infante equation using the modified Khater method, Results Phys., 48, 106416, 2023 · doi:10.1016/j.rinp.2023.106416
[10] Khater, MMA; Alfalqi, SH; Alzaidi, JF; Attia, RAM, Plenty of accurate novel solitary wave solutions of the fractional Chaffee-Infante equation, Results Phys., 48, 106400, 2023 · doi:10.1016/j.rinp.2023.106400
[11] Khater, MMA; Attia, RAM, Simulating the behavior of the population dynamics using the non-local fractional Chaffee-Infante equation, Fractals, 31, 10, 2340200-18, 2023 · doi:10.1142/S0218348X23402004
[12] Şengül, T.; Tiryakioglu, B., Dynamic transitions and bifurcations of 1D reaction-diffusion equations: the self-adjoint case, Math. Methods Appl. Sci., 45, 5, 2871-2892, 2022 · Zbl 1529.35034 · doi:10.1002/mma.7959
[13] Kumar, S.; Almusawa, H.; Hamid, I.; Akbar, MA; Abdou, MA, Abundant analytical soliton solutions and Evolutionary behaviors of various wave profiles to the Chaffee-Infante equation with gas diffusion in a homogeneous medium, Results Phys., 30, 104866, 2021 · doi:10.1016/j.rinp.2021.104866
[14] Sulaiman, TA; Yusuf, A.; Alquran, M., Dynamics of lump solutions to the variable coefficients (2+1)-dimensional Burger’s and Chaffee-Infante equations, J. Geom. Phys., 168, 104315, 2021 · Zbl 1479.35725 · doi:10.1016/j.geomphys.2021.104315
[15] Riaz, MB; Atangana, A.; Jhangeer, A.; Junaid-U-Rehman, M., Some exact explicit solutions and conservation laws of Chaffee-Infante equation by Lie symmetry analysis, Phys. Scr., 96, 8, 084008, 2021 · doi:10.1088/1402-4896/ac0074
[16] Khater, MMA; Ghanbari, B., On the solitary wave solutions and physical characterization of gas diffusion in a homogeneous medium via some efficient techniques, Eur. Phys. J. Plus, 136, 4, 447, 2021 · doi:10.1140/epjp/s13360-021-01457-1
[17] Younas, U.; Sulaiman, T.; Ismael, HF; Shah, NA; Eldin, SM, On the lump interaction phenomena to the conformable fractional (2+ 1)-dimensional KdV equation, Results Phys., 52, 106863, 2023 · doi:10.1016/j.rinp.2023.106863
[18] Younas, U.; Seadawy, AR; Younis, M.; Rizvi, ST; Althobaiti, S., Diverse wave propagation in shallow water waves with the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony and Benney-Luke integrable models, Open Phys., 19, 1, 808-818, 2021 · doi:10.1515/phys-2021-0100
[19] Nasreen, N.; Younas, U.; Lu, D.; Zhang, Z.; Rezazadeh, H.; Hosseinzadeh, M., Propagation of solitary and periodic waves to conformable ion sound and Langmuir waves dynamical system, Opt. Quant. Electron., 55, 10, 868, 2023 · doi:10.1007/s11082-023-05102-2
[20] Nasreen, N.; Younas, U.; Sulaiman, TA; Zhang, Z.; Lu, D., A variety of M-truncated optical solitons to a nonlinear extended classical dynamical model, Results Phys., 51, 106722, 2023 · doi:10.1016/j.rinp.2023.106722
[21] Ismael, HF; Younas, U.; Sulaiman, TA; Nasreen, N.; Shah, NA; Ali, MR, Non classical interaction aspects to a nonlinear physical model, Results Phys., 49, 106520, 2023 · doi:10.1016/j.rinp.2023.106520
[22] Nasreen, N.; Lu, D.; Zhang, Z.; Akgül, A.; Younas, U.; Nasreen, S.; Al-Ahmadi, AN, Propagation of optical pulses in fiber optics modelled by coupled space-time fractional dynamical system, Alex. Eng. J., 73, 173-187, 2023 · doi:10.1016/j.aej.2023.04.046
[23] Hosseini, K.; Alizadeh, F.; Sadri, K.; Hinçal, E.; Akbulut, A.; Alshehri, H.; Osman, M., Lie vector fields, conservation laws, bifurcation analysis, and Jacobi elliptic solutions to the Zakharov-Kuznetsov modified equal-width equation, Opt. Quant. Electron., 56, 4, 506, 2024 · doi:10.1007/s11082-023-06086-9
[24] Hosseini, K.; Alizadeh, F.; Hinçal, E.; Baleanu, D.; Akgül, A.; Hassan, A., Lie symmetries, bifurcation analysis, and Jacobi elliptic function solutions to the nonlinear Kodama equation, Results Phys., 54, 107129, 2023 · doi:10.1016/j.rinp.2023.107129
[25] Hosseini, K.; Hinçal, E.; Ilie, M., Bifurcation analysis, chaotic behaviors, sensitivity analysis, and soliton solutions of a generalized Schrödinger equation, Nonlinear Dyn., 111, 18, 17455-17462, 2023 · doi:10.1007/s11071-023-08759-2
[26] Rafiq, MH; Jannat, N.; Rafiq, MN, Sensitivity analysis and analytical study of the three-component coupled NLS-type equations in fiber optics, Opt. Quant. Electron., 55, 7, 637, 2023 · doi:10.1007/s11082-023-04908-4
[27] Rafiq, MH; Raza, N.; Jhangeer, A., Dynamic study of bifurcation, chaotic behavior and multi-soliton profiles for the system of shallow water wave equations with their stability, Chaos Solitons Fractals, 171, 113436, 2023 · doi:10.1016/j.chaos.2023.113436
[28] Raza, N.; Arshed, S.; Butt, AR; Inc, M.; Yao, S-W, Investigation of new solitons in nematic liquid crystals with Kerr and non-Kerr law nonlinearities, J. Nonlinear Opt. Phys. Mater., 32, 2, 2350020, 2023 · doi:10.1142/S0218863523500200
[29] Raza, N.; Butt, AR; Arshed, S.; Kaplan, M., A new exploration of some explicit soliton solutions of q-deformed Sinh-Gordon equation utilizing two novel techniques, Opt. Quant. Electron., 55, 3, 200, 2023 · doi:10.1007/s11082-022-04461-6
[30] Raza, N.; Rani, B.; Chahlaoui, Y.; Shah, NA, A variety of new rogue wave patterns for three coupled nonlinear Maccari’s models in complex form, Nonlinear Dyn., 111, 19, 18419-18437, 2023 · doi:10.1007/s11071-023-08839-3
[31] Jaradat, M.; Batool, A.; Butt, AR; Raza, N., New solitary wave and computational solitons for Kundu-Eckhaus equation, Results Phys., 43, 106084, 2022 · doi:10.1016/j.rinp.2022.106084
[32] Rafiq, MH; Raza, N.; Jhangeer, A., Nonlinear dynamics of the generalized unstable nonlinear Schrödinger equation: a graphical perspective, Opt. Quant. Electron., 55, 7, 628, 2023 · doi:10.1007/s11082-023-04904-8
[33] Arshad, M.; Lu, D.; Wang, J., (n+ 1)-dimensional fractional reduced differential transform method for fractional order partial differential equations, Commun. Nonlinear Sci. Numer. Simul., 48, 509-519, 2017 · Zbl 1510.65277 · doi:10.1016/j.cnsns.2017.01.018
[34] Arshad, M.; Seadawy, AR; Mehmood, A.; Shehzad, K., Lump kink interactional and breather-type waves solutions of (3+ 1)-dimensional shallow water wave dynamical model and its stability with applications, Modern Phys. Lett. B, 2024 · doi:10.1142/S0217984924504025
[35] Sarwar, A.; Gang, T.; Arshad, M.; Ahmed, I.; Ahmad, M., Abundant solitary wave solutions for space-time fractional unstable nonlinear Schrödinger equations and their applications, Ain Shams Eng. J., 14, 2, 101839, 2023 · doi:10.1016/j.asej.2022.101839
[36] Batool, S.; Arshad, M.; Perveen, N.; Sarwar, S., Bright optical solution for fractional Lakshmanan-Porsezian-Daniel with spatio temporal dispersion by improved adomian decomposition method, Opt. Quant. Electron., 56, 7, 1137, 2024 · doi:10.1007/s11082-024-07048-5
[37] Seadawy, AR; Arshad, M.; Lu, D., The weakly nonlinear wave propagation theory for the Kelvin-Helmholtz instability in magnetohydrodynamics flows, Chaos Solitons Fractals, 139, 110141, 2020 · Zbl 1490.35451 · doi:10.1016/j.chaos.2020.110141
[38] Alquran, M.; Al-deiakeh, R., Lie-Backlund symmetry generators and a variety of novel periodic-soliton solutions to the complex-mode of modified Korteweg-de Vries equation, Qual. Theory Dyn. Syst., 23, 2, 95, 2024 · Zbl 07815922 · doi:10.1007/s12346-023-00953-2
[39] Alquran, M., Necessary conditions for convex-periodic, elliptic-periodic, inclined-periodic, and rogue wave-solutions to exist for the multi-dispersions Schrodinger equation, Phys. Scr., 99, 2, 025248, 2024 · doi:10.1088/1402-4896/ad1fba
[40] Alquran, M., Dynamic behavior of explicit elliptic and quasi periodic-wave solutions to the generalized (2+ 1)-dimensional Kundu-Mukherjee-Naskar equation, Optik, 301, 171697, 2024 · doi:10.1016/j.ijleo.2024.171697
[41] Alquran, M., The amazing fractional Maclaurin series for solving different types of fractional mathematical problems that arise in physics and engineering, Partial Differ. Equ. Appl. Math., 7, 100506, 2023 · doi:10.1016/j.padiff.2023.100506
[42] Alquran, M., Investigating the revisited generalized stochastic potential-KdV equation: fractional time-derivative against proportional time-delay, Rom. J. Phys., 68, 106, 2023
[43] Raza, N.; Rafiq, MH; Kaplan, M.; Kumar, S.; Chu, Y-M, The unified method for abundant soliton solutions of local time fractional nonlinear evolution equations, Results Phys., 22, 103979, 2021 · doi:10.1016/j.rinp.2021.103979
[44] Tahir, M.; Kumar, S.; Rehman, H.; Ramzan, M.; Hasan, A.; Osman, MS, Exact traveling wave solutions of Chaffee-Infante equation in (2 + 1)-dimensions and dimensionless Zakharov equation, Math. Methods Appl. Sci., 44, 2, 1500-1513, 2021 · Zbl 1470.35116 · doi:10.1002/mma.6847
[45] Xu, H.; Chang, H.; Zhang, D., DLGA-PDE: discovery of PDEs with incomplete candidate library via combination of deep learning and genetic algorithm, J. Comput. Phys., 418, 2020 · Zbl 07506161 · doi:10.1016/j.jcp.2020.109584
[46] Mao, Y., Exact solutions to (2+1) (2 + 1) -dimensional Chaffee-Infante equation, Pramana, 91, 1, 9, 2018 · doi:10.1007/s12043-018-1583-4
[47] Li, J.; Feng, Z., Quadratic and cubic nonlinear oscillators with damping and their applications, Int. J. Bifurc. Chaos, 26, 3, 1650050-350, 2016 · Zbl 1336.34005 · doi:10.1142/S0218127416500504
[48] Rolland, J., Bouchet, F., Simonnet, E.: Rare transitions between metastable states in the stochastic Chaffee-Infante equation., In: EGU General Assembly Conference Abstracts, EGU General Assembly Conference Abstracts, p. 14223 (2015)
[49] Qiang, L.; Yun, Z.; Yuanzheng, W., Qualitative Analysis and Travelling Wave Solutions for the Chaffee-Infante equation, Rep. Math. Phys., 71, 2, 177-193, 2013 · Zbl 1292.35074 · doi:10.1016/S0034-4877(13)60028-2
[50] Sakthivel, R.; Chun, C., New soliton solutions of Chaffee-Infante equations using the exp-function method, Z. Naturforschung Teil A, 65, 3, 197-202, 2010 · doi:10.1515/zna-2010-0307
[51] Xie, F-D; Liu, X-D; Sun, X-P; Tang, D., Application of computer algebra in solving Chaffee-Infante equation, Commun. Theor. Phys., 49, 4, 825-828, 2008 · Zbl 1392.35026 · doi:10.1088/0253-6102/49/4/04
[52] Atangana, A.; Alqahtani, RT, Modelling the spread of river blindness disease via the caputo fractional derivative and the beta-derivative, Entropy, 18, 2, 40, 2016 · doi:10.3390/e18020040
[53] Atangana, A.; Alkahtani, BST, Modeling the spread of R ubella disease using the concept of with local derivative with fractional parameter: beta-derivative, Complexity, 21, 6, 442-451, 2016 · doi:10.1002/cplx.21704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.