×

Arbitrary high-order structure-preserving schemes for generalized Rosenau-type equations. (English) Zbl 1538.65418

Summary: Arbitrary high-order numerical schemes conserving the momentum and energy of the generalized Rosenau-type equation are studied. Derivation of momentum-preserving schemes is made within the symplectic Runge-Kutta method coupled with the standard Fourier pseudo-spectral method in space. Combining quadratic auxiliary variable approach, symplectic Runge-Kutta method, and standard Fourier pseudo-spectral method, we introduce a class of high-order mass- and energy-preserving schemes for the Rosenau equation. Various numerical tests illustrate the performance of the proposed schemes.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65P10 Numerical methods for Hamiltonian systems including symplectic integrators
35Q53 KdV equations (Korteweg-de Vries equations)

References:

[1] The cost of SC-EPS is much cheaper than the one provided by the 4-th MPS, and the cost of 4-th MPS is much cheaper than the one provided by the YC-EPS.
[2] If p increases, more QAV variables should be introduced. As the result, the computa-tional cost of the high-order energy-preserving schemes also increase.
[3] M. Ahmat and J. Qiu, SSP IMEX Runge-Kutta WENO scheme for generalized Rosenau-KdV-RLW equation, J. Math. Study 55(1), 1-21 (2022). · Zbl 1499.65368
[4] N. Atouani and K. Omrani, A new conservative high-order accurate difference scheme for the Rosenau equation, Appl. Anal. 94(12), 2435-2455 (2015). · Zbl 1338.65213
[5] J. Cai, H. Liang and C. Zhang, Efficient high-order structure-preserving methods for the gen-eralized Rosenau-type equation with power law nonlinearity, Commun. Nonlinear Sci. Numer. Simul. 59, 122-131 (2018). · Zbl 1510.65186
[6] W. Cai, Y. Sun and Y. Wang, Variational discretizations for the generalized Rosenau-type equa-tions, Appl. Math. Comput. 271, 860-873 (2015). · Zbl 1410.65302
[7] J. Chen and M. Qin, Multi-symplectic Fourier pseudospectral method for the nonlinear Schrö-dinger equation, Electron. Trans. Numer. Anal. 12, 193-204 (2001). · Zbl 0980.65108
[8] Y. Chen, Y. Gong, Q. Hong and C. Wang, A novel class of energy-preserving Runge-Kutta meth-ods for the Korteweg-de Vries equation, Numer. Math. Theory Methods Appl. 15(3), 768-792 (2022). · Zbl 1513.65402
[9] K. Cheng, W. Feng, S. Gottlieb and C. Wang, A Fourier pseudospectral method for the “goo” Boussinesq equation with second-order temporal accuracy, Numer. Methods Partial Differential Equations 31(1), 202-224 (2015). · Zbl 1327.65195
[10] K. Cheng and C. Wang, Long time stability of high order multi-step numerical schemes for two-dimensional incompressible Navier-Stokes equations, SIAM J. Numer. Anal. 54(5), 3123-3144 (2016). · Zbl 1457.65141
[11] Q. Cheng and C. Wang, Error estimate of a second order accurate scalar auxiliary variable (SAV) scheme for the thin film epitaxial equation, Adv. Appl. Math. Mech. 13(6), 1318-1354 (2021). · Zbl 1488.65363
[12] S.K. Chung, Finite difference approximate solutions for the Rosenau equation, Appl. Anal. 69(1-2), 149-156 (1998). · Zbl 0904.65093
[13] J. Cui, Y. Wang and C. Jiang, Arbitrarily high-order structure-preserving schemes for the Gross-Pitaevskii equation with angular momentum rotation, Comput. Phys. Commun. 261, 107767 (2021). · Zbl 07690841
[14] Y.I. Dimitrienko, S. Li and Y. Niu, Study on the dynamics of a nonlinear dispersion model in both 1D and 2D based on the fourth-order compact conservative difference scheme, Math. Comput. Simulation 182, 661-689 (2021). · Zbl 1524.65332
[15] K. Feng and M. Qin, Symplectic Geometric Algorithms for Hamiltonian Systems, Springer and Zhejiang Science and Technology Publishing House (2010). · Zbl 1207.65149
[16] D. Furihata and T. Matsuo, Discrete Variational Derivative Method: A Structure-Preserving Nu-merical Method for Partial Differential Equations, Chapman & Hall/CRC (2011). · Zbl 1227.65094
[17] Y. Gong, J. Cai and Y. Wang, Multi-symplectic Fourier pseudospectral method for the Kawahara equation, Commun. Comput. Phys. 16(1), 35-55 (2014). · Zbl 1388.65119
[18] Y. Gong, Q. Hong, C. Wang and Y. Wang, Quadratic auxiliary variable Runge-Kutta methods for the Camassa-Holm equation, Adv. Appl. Math. Mech. (To appear).
[19] Y. Gong, Q. Wang, Y. Wang and J. Cai, A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation, J. Comput. Phys. 328, 354-370 (2017). · Zbl 1406.35356
[20] Y. Gong, J. Zhao and Q. Wang, Arbitrarily high-order linear energy stable schemes for gradient flow models, J. Comput. Phys. 419, 109610 (2020). · Zbl 07507221
[21] S. Gottlieb, F. Tone, C. Wang, X. Wang and D. Wirosoetisno, Long time stability of a classical efficient scheme for two-dimensional Navier-Stokes equations, SIAM J. Numer. Anal. 50(1), 126-150 (2012). · Zbl 1237.76033
[22] S. Gottlieb and C. Wang, Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers’ equation, J. Sci. Comput. 53(1), 102-128 (2012). · Zbl 1297.76126
[23] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer-Verlag (2006). · Zbl 1094.65125
[24] D. He, Exact solitary solution and a three-level linearly implicit conservative finite difference method for the generalized Rosenau-Kawahara-RLW equation with generalized Novikov type per-turbation, Nonlinear Dyn. 85, 479-498 (2016). · Zbl 1349.37065
[25] J. Hu, Y. Xu and B. Hu, Conservative linear difference scheme for Rosenau-KdV equation, Adv. Math. Phys. 2013, 423718 (2013). · Zbl 1282.35332
[26] C. Jiang, W. Cai, Y. Wang and H. Li, A novel sixth order energy-conserved method for three-dimensional time-domain Maxwell’s equations, arXiv:1705.08125 (2017).
[27] C. Jiang, J. Cui, W. Cai and Y. Wang, A novel linearized and momentum-preserving Fourier pseudo-spectral scheme for the Rosenau-Korteweg de Vries equation, Numer. Methods Partial Differential Equations 39(2), 1558-1582 (2023). · Zbl 07776974
[28] C. Jiang, J. Cui, X. Qian and S. Song, High-order linearly implicit structure-preserving exponen-tial integrators for the nonlinear Schrödinger equation, J. Sci. Comput. 90(1), 66 (2022). · Zbl 1481.65134
[29] C. Jiang, Y. Wang and Y. Gong, Arbitrarily high-order energy-preserving schemes for the Camassa-Holm equation, Appl. Numer. Math. 151, 85-97 (2020). · Zbl 1439.37079
[30] S. Li, Numerical analysis for fourth-order compact conservative difference scheme to solve the 3D Rosenau-RLW equation, Comput. Math. Appl. 72(9), 2388-2407 (2016). · Zbl 1368.65141
[31] X. Li, J. Shen and H. Rui, Energy stability and convergence of SAV block-centered finite difference method for gradient flows, Math. Comp. 88(319), 2047-2068 (2019). · Zbl 1422.65165
[32] K. Omrani, F. Abidi, T. Achouri and N. Khiari, A new conservative finite difference scheme for the Rosenau equation, Appl. Math. Comput. 201(1-2), 35-43 (2008). · Zbl 1156.65078
[33] X. Pan and L. Zhang, On the convergence of a conservative numerical scheme for the usual Rosenau-RLW equation, Appl. Math. Model. 36(8), 3371-3378 (2012). · Zbl 1252.65144
[34] G.R.W. Quispel and D.I. McLaren, A new class of energy-preserving numerical integration meth-ods, J. Phys. A 41(4), 045206 (2008). · Zbl 1132.65065
[35] P. Razborova, L. Moraru and A. Biswas, Perturbation of dispersive shallow water waves with Rosenau-KdV-RLW equation and power law nonlinearity, Romanian J. Phys. 59(7-8), 658-676 (2014).
[36] P. Rosenau, Dynamics of dense discrete systems: High order effects, Prog. Theor. Phys. 79(5), 1028-1042 (1988).
[37] J.M. Sanz-Serna, Runge-Kutta schemes for Hamiltonian systems, BIT 28, 877-883 (1988). · Zbl 0655.70013
[38] J.M. Sanz-Serna and M. Calvo, Numerical Hamiltonian Problems, Chapman & Hall (1994). · Zbl 0816.65042
[39] J. Shen and T. Tang, Spectral and High-Order Methods with Applications, Science Press (2006). · Zbl 1234.65005
[40] J. Shen and J. Xu, Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows, SIAM J. Numer. Anal. 56(5), 2895-2912 (2018). · Zbl 1403.65047
[41] J. Shen, J. Xu and J. Yang, The scalar auxiliary variable (SAV) approach for gradient, J. Comput. Phys. 353, 407-416 (2018). · Zbl 1380.65181
[42] J. Shen, J. Xu and J. Yang, A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev. 61(3), 474-506 (2019). · Zbl 1422.65080
[43] B.K. Tapley, Geometric integration of ODEs using multiple quadratic auxiliary variables, SIAM J. Sci. Comput. 44(4), A2651-A2668 (2022). · Zbl 1497.65256
[44] H. Wang, S. Li and J. Wang, A conservative weighted finite difference scheme for the generalized Rosenau-RLW equation, Comput. Math. Appl. 36(1), 63-78 (2017). · Zbl 1359.65165
[45] J. Wang and Q. Zeng, A fourth-order compact and conservative difference scheme for the general-ized Rosenau-Korteweg de Vries equation in two dimensions, J. Comput. Math. 37(4), 541-555 (2019). · Zbl 1449.65200
[46] M. Wang, Q. Huang and C. Wang, A second order accurate scalar auxiliary variable (SAV) numerical method for the square phase field crystal equation, J. Sci. Comput. 88(2), 33 (2021). · Zbl 1497.65196
[47] X. Wang and W. Dai, A new implicit energy conservative difference scheme with fourth-order accuracy for the generalized Rosenau-Kawahara-RLW equation, Comput. Appl. Math. 37, 6560-6581 (2018). · Zbl 1413.65407
[48] X. Wang, W. Dai and Y. Yan, Numerical analysis of a new conservative scheme for the 2D gener-alized Rosenau-RLW equation, Appl. Anal. 100(12), 2564-2580 (2021). · Zbl 1481.65161
[49] B. Wongsaijai, P. Charoensawan, T. Chaobankoh and K. Poochinapan, Advance in compact structure-preserving manner to the Rosenau-Kawahara model of shallow-water wave, Math. Methods Appl. Sci. 44(8), 7048-7064 (2021). · Zbl 1473.65125
[50] X. Yang, J. Zhao and Q. Wang, Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method, J. Comput. Phys. 333, 104-127 (2017). · Zbl 1375.82121
[51] C. Zhang, H. Wang, J. Huang, C. Wang and X. Yue, A second order operator splitting numerical scheme for the “good” Boussinesq equation, Appl. Numer. Math. 119, 179-193 (2017). · Zbl 1368.65203
[52] G. Zhang and C. Jiang, Arbitrary high-order structure-preserving methods for the quantum Za-kharov system, arXiv:2202.13052 (2022).
[53] M. Zheng and J. Zhou, An average linear difference scheme for the generalized Rosenau-KdV equation, J. Appl. Math. 2014, 202793 (2014). · Zbl 1406.35341
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.