×

Small Schwarzschild de Sitter black holes, the future boundary and islands. (English) Zbl 07877317

Summary: We continue the study of 4-dimensional Schwarzschild de Sitter black holes in the regime where the black hole mass is small compared with the de Sitter scale, following [K. Goswami and K. Narayan, “Small Schwarzschild de Sitter black holes, quantum extremal surfaces and islands”, Preprint, arXiv:2207.10724, see also Zbl 1534.83044]. The de Sitter temperature is very low compared with that of the black hole. We consider the future boundary as the location where the black hole Hawking radiation is collected. Using 2-dimensional tools, we find unbounded growth of the entanglement entropy of radiation as the radiation region approaches the entire future boundary. Self-consistently including appropriate late time islands emerging just inside the black hole horizon leads to a reasonable Page curve. We also discuss other potential island solutions which show inconsistencies.

MSC:

81-XX Quantum theory

Citations:

Zbl 1534.83044

References:

[1] S.W. Hawking, Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D14 (1976) 2460 [INSPIRE].
[2] S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys.43 (1975) 199 [Erratum ibid.46 (1976) 206] [INSPIRE]. · Zbl 1378.83040
[3] S.D. Mathur, The Information paradox: A Pedagogical introduction, Class. Quant. Grav.26 (2009) 224001 [arXiv:0909.1038] [INSPIRE]. · Zbl 1181.83129
[4] Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J., Black Holes: Complementarity or Firewalls?, JHEP, 02, 062, 2013 · Zbl 1342.83121
[5] Page, DN, Information in black hole radiation, Phys. Rev. Lett., 71, 3743, 1993 · Zbl 0972.83567
[6] Page, DN, Time Dependence of Hawking Radiation Entropy, JCAP, 09, 028, 2013
[7] Penington, G., Entanglement Wedge Reconstruction and the Information Paradox, JHEP, 09, 002, 2020 · Zbl 1454.81039
[8] Almheiri, A.; Engelhardt, N.; Marolf, D.; Maxfield, H., The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, JHEP, 12, 063, 2019 · Zbl 1431.83123
[9] Almheiri, A.; Mahajan, R.; Maldacena, J.; Zhao, Y., The Page curve of Hawking radiation from semiclassical geometry, JHEP, 03, 149, 2020 · Zbl 1435.83110
[10] Penington, G.; Shenker, SH; Stanford, D.; Yang, Z., Replica wormholes and the black hole interior, JHEP, 03, 205, 2022 · Zbl 1522.83227
[11] Almheiri, A., Replica Wormholes and the Entropy of Hawking Radiation, JHEP, 05, 013, 2020 · Zbl 1437.83084
[12] Faulkner, T.; Lewkowycz, A.; Maldacena, J., Quantum corrections to holographic entanglement entropy, JHEP, 11, 074, 2013 · Zbl 1392.81021
[13] Engelhardt, N.; Wall, AC, Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime, JHEP, 01, 073, 2015
[14] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE]. · Zbl 1228.83110
[15] Ryu, S.; Takayanagi, T., Aspects of Holographic Entanglement Entropy, JHEP, 08, 045, 2006
[16] Hubeny, VE; Rangamani, M.; Takayanagi, T., A covariant holographic entanglement entropy proposal, JHEP, 07, 062, 2007
[17] M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy, Springer (2017) [doi:10.1007/978-3-319-52573-0] [INSPIRE]. · Zbl 1371.81011
[18] A. Almheiri et al., The entropy of Hawking radiation, Rev. Mod. Phys.93 (2021) 035002 [arXiv:2006.06872] [INSPIRE].
[19] Raju, S., Lessons from the information paradox, Phys. Rept., 943, 1, 2022 · Zbl 1503.83012
[20] B. Chen, B. Czech and Z.-Z. Wang, Quantum information in holographic duality, Rept. Prog. Phys.85 (2022) 046001 [arXiv:2108.09188] [INSPIRE].
[21] A. Almheiri, R. Mahajan and J. Maldacena, Islands outside the horizon, arXiv:1910.11077 [INSPIRE].
[22] Chen, HZ, Information Flow in Black Hole Evaporation, JHEP, 03, 152, 2020 · Zbl 1435.83111
[23] Almheiri, A.; Mahajan, R.; Santos, JE, Entanglement islands in higher dimensions, SciPost Phys., 9, 001, 2020
[24] Gautason, FF; Schneiderbauer, L.; Sybesma, W.; Thorlacius, L., Page Curve for an Evaporating Black Hole, JHEP, 05, 091, 2020 · Zbl 1437.83080
[25] Anegawa, T.; Iizuka, N., Notes on islands in asymptotically flat 2d dilaton black holes, JHEP, 07, 036, 2020 · Zbl 1451.83056
[26] Hashimoto, K.; Iizuka, N.; Matsuo, Y., Islands in Schwarzschild black holes, JHEP, 06, 085, 2020 · Zbl 1437.83060
[27] Hartman, T.; Shaghoulian, E.; Strominger, A., Islands in Asymptotically Flat 2D Gravity, JHEP, 07, 022, 2020 · Zbl 1455.83017
[28] Hollowood, TJ; Kumar, SP, Islands and Page Curves for Evaporating Black Holes in JT Gravity, JHEP, 08, 094, 2020 · Zbl 1454.83082
[29] C. Krishnan, V. Patil and J. Pereira, Page Curve and the Information Paradox in Flat Space, arXiv:2005.02993 [INSPIRE].
[30] Alishahiha, M.; Faraji Astaneh, A.; Naseh, A., Island in the presence of higher derivative terms, JHEP, 02, 035, 2021 · Zbl 1460.83062
[31] Geng, H.; Karch, A., Massive islands, JHEP, 09, 121, 2020 · Zbl 1454.83113
[32] Li, T.; Chu, J.; Zhou, Y., Reflected Entropy for an Evaporating Black Hole, JHEP, 11, 155, 2020 · Zbl 1456.83060
[33] Dong, X.; Qi, X-L; Shangnan, Z.; Yang, Z., Effective entropy of quantum fields coupled with gravity, JHEP, 10, 052, 2020 · Zbl 1456.83021
[34] Chen, HZ, Evaporating Black Holes Coupled to a Thermal Bath, JHEP, 01, 065, 2021 · Zbl 1459.83032
[35] Ling, Y.; Liu, Y.; Xian, Z-Y, Island in Charged Black Holes, JHEP, 03, 251, 2021 · Zbl 1461.83060
[36] Matsuo, Y., Islands and stretched horizon, JHEP, 07, 051, 2021 · Zbl 1468.83027
[37] Goto, K.; Hartman, T.; Tajdini, A., Replica wormholes for an evaporating 2D black hole, JHEP, 04, 289, 2021 · Zbl 1462.83015
[38] I. Akal et al., Entanglement Entropy in a Holographic Moving Mirror and the Page Curve, Phys. Rev. Lett.126 (2021) 061604 [arXiv:2011.12005] [INSPIRE].
[39] Geng, H., Information Transfer with a Gravitating Bath, SciPost Phys., 10, 103, 2021
[40] Deng, F.; Chu, J.; Zhou, Y., Defect extremal surface as the holographic counterpart of Island formula, JHEP, 03, 008, 2021 · Zbl 1461.83055
[41] Karananas, GK; Kehagias, A.; Taskas, J., Islands in linear dilaton black holes, JHEP, 03, 253, 2021 · Zbl 1461.83032
[42] Wang, X.; Li, R.; Wang, J., Islands and Page curves of Reissner-Nordström black holes, JHEP, 04, 103, 2021 · Zbl 1462.83022
[43] Verheijden, E.; Verlinde, E., From the BTZ black hole to JT gravity: geometrizing the island, JHEP, 11, 092, 2021 · Zbl 1521.83155
[44] Kawabata, K.; Nishioka, T.; Okuyama, Y.; Watanabe, K., Probing Hawking radiation through capacity of entanglement, JHEP, 05, 062, 2021 · Zbl 1466.83054
[45] Anderson, L.; Parrikar, O.; Soni, RM, Islands with gravitating baths: towards ER = EPR, JHEP, 10, 226, 2020 · Zbl 1476.83038
[46] Bhattacharya, A.; Bhattacharyya, A.; Nandy, P.; Patra, AK, Islands and complexity of eternal black hole and radiation subsystems for a doubly holographic model, JHEP, 05, 135, 2021 · Zbl 1466.83095
[47] Kim, W.; Nam, M., Entanglement entropy of asymptotically flat non-extremal and extremal black holes with an island, Eur. Phys. J. C, 81, 869, 2021
[48] Ghosh, K.; Krishnan, C., Dirichlet baths and the not-so-fine-grained Page curve, JHEP, 08, 119, 2021 · Zbl 1470.83052
[49] X. Wang, R. Li and J. Wang, Page curves for a family of exactly solvable evaporating black holes, Phys. Rev. D103 (2021) 126026 [arXiv:2104.00224] [INSPIRE].
[50] R. Li, X. Wang and J. Wang, Island may not save the information paradox of Liouville black holes, Phys. Rev. D104 (2021) 106015 [arXiv:2105.03271] [INSPIRE].
[51] R. Li and J. Wang, Hawking radiation and page curves of the black holes in thermal environment, Commun. Theor. Phys.73 (2021) 075401 [INSPIRE]. · Zbl 1521.83134
[52] Kawabata, K.; Nishioka, T.; Okuyama, Y.; Watanabe, K., Replica wormholes and capacity of entanglement, JHEP, 10, 227, 2021 · Zbl 1476.83049
[53] Lu, Y.; Lin, J., Islands in Kaluza-Klein black holes, Eur. Phys. J. C, 82, 132, 2022
[54] Kruthoff, J.; Mahajan, R.; Murdia, C., Free fermion entanglement with a semitransparent interface: the effect of graybody factors on entanglement islands, SciPost Phys., 11, 063, 2021
[55] Yu, M-H; Ge, X-H, Islands and Page curves in charged dilaton black holes, Eur. Phys. J. C, 82, 14, 2022
[56] B. Ahn et al., Islands in charged linear dilaton black holes, Phys. Rev. D105 (2022) 046012 [arXiv:2107.07444] [INSPIRE].
[57] X. Wang, K. Zhang and J. Wang, What can we learn about islands and state paradox from quantum information theory?, arXiv:2107.09228 [INSPIRE].
[58] I. Aref’eva and I. Volovich, A note on islands in Schwarzschild black holes, Teor. Mat. Fiz.214 (2023) 500 [arXiv:2110.04233] [INSPIRE]. · Zbl 1516.83028
[59] He, S.; Sun, Y.; Zhao, L.; Zhang, Y-X, The universality of islands outside the horizon, JHEP, 05, 047, 2022 · Zbl 1522.83186
[60] Matsuo, Y., Entanglement entropy and vacuum states in Schwarzschild geometry, JHEP, 06, 109, 2022 · Zbl 1522.83214
[61] Omidi, F., Entropy of Hawking radiation for two-sided hyperscaling violating black branes, JHEP, 04, 022, 2022 · Zbl 1522.83222
[62] R. Espíndola, B. Najian and D. Nikolakopoulou, Islands in FRW Cosmologies, arXiv:2203.04433 [INSPIRE].
[63] Tian, J., Islands in Generalized Dilaton Theories, Symmetry, 15, 1402, 2023
[64] Laddha, A.; Prabhu, SG; Raju, S.; Shrivastava, P., The Holographic Nature of Null Infinity, SciPost Phys., 10, 041, 2021
[65] Geng, H., Inconsistency of islands in theories with long-range gravity, JHEP, 01, 182, 2022 · Zbl 1521.83109
[66] I. Bena, E.J. Martinec, S.D. Mathur and N.P. Warner, Fuzzballs and Microstate Geometries: Black-Hole Structure in String Theory, arXiv:2204.13113 [INSPIRE].
[67] Krishnan, C., Critical Islands, JHEP, 01, 179, 2021 · Zbl 1459.83048
[68] Chen, Y.; Gorbenko, V.; Maldacena, J., Bra-ket wormholes in gravitationally prepared states, JHEP, 02, 009, 2021 · Zbl 1460.83059
[69] Hartman, T.; Jiang, Y.; Shaghoulian, E., Islands in cosmology, JHEP, 11, 111, 2020
[70] Van Raamsdonk, M., Comments on wormholes, ensembles, and cosmology, JHEP, 12, 156, 2021 · Zbl 1521.83047
[71] Balasubramanian, V.; Kar, A.; Ugajin, T., Islands in de Sitter space, JHEP, 02, 072, 2021 · Zbl 1460.83063
[72] W. Sybesma, Pure de Sitter space and the island moving back in time, Class. Quant. Grav.38 (2021) 145012 [arXiv:2008.07994] [INSPIRE]. · Zbl 1482.83109
[73] Manu, A.; Narayan, K.; Paul, P., Cosmological singularities, entanglement and quantum extremal surfaces, JHEP, 04, 200, 2021 · Zbl 1462.83032
[74] Choudhury, S., Circuit Complexity from Cosmological Islands, Symmetry, 13, 1301, 2021
[75] R. Bousso and A. Shahbazi-Moghaddam, Island Finder and Entropy Bound, Phys. Rev. D103 (2021) 106005 [arXiv:2101.11648] [INSPIRE].
[76] H. Geng, Y. Nomura and H.-Y. Sun, Information paradox and its resolution in de Sitter holography, Phys. Rev. D103 (2021) 126004 [arXiv:2103.07477] [INSPIRE].
[77] Fallows, S.; Ross, SF, Islands and mixed states in closed universes, JHEP, 07, 022, 2021 · Zbl 1468.83068
[78] Aalsma, L.; Sybesma, W., The Price of Curiosity: Information Recovery in de Sitter Space, JHEP, 05, 291, 2021 · Zbl 1466.83069
[79] Uhlemann, CF, Islands and Page curves in 4d from Type IIB, JHEP, 08, 104, 2021 · Zbl 1469.83041
[80] D. Giataganas and N. Tetradis, Entanglement entropy in FRW backgrounds, Phys. Lett. B820 (2021) 136493 [arXiv:2105.12614] [INSPIRE]. · Zbl 07414492
[81] Aalsma, L., Shocks and information exchange in de Sitter space, JHEP, 10, 104, 2021 · Zbl 1476.83069
[82] K. Langhoff, C. Murdia and Y. Nomura, Multiverse in an inverted island, Phys. Rev. D104 (2021) 086007 [arXiv:2106.05271] [INSPIRE].
[83] S.E. Aguilar-Gutierrez et al., Islands in Multiverse Models, JHEP05 (2021) 137 [Addendum ibid.05 (2022) 137] [arXiv:2108.01278] [INSPIRE].
[84] Shaghoulian, E., The central dogma and cosmological horizons, JHEP, 01, 132, 2022 · Zbl 1521.83148
[85] C.-J. Chou, H.B. Lao and Y. Yang, Page curve of effective Hawking radiation, Phys. Rev. D106 (2022) 066008 [arXiv:2111.14551] [INSPIRE].
[86] Goswami, K.; Narayan, K.; Saini, HK, Cosmologies, singularities and quantum extremal surfaces, JHEP, 03, 201, 2022 · Zbl 1522.83069
[87] R. Bousso and E. Wildenhain, Islands in closed and open universes, Phys. Rev. D105 (2022) 086012 [arXiv:2202.05278] [INSPIRE].
[88] Moitra, U.; Sake, SK; Trivedi, SP, Aspects of Jackiw-Teitelboim gravity in Anti-de Sitter and de Sitter spacetime, JHEP, 06, 138, 2022 · Zbl 1522.83263
[89] Svesko, A.; Verheijden, E.; Verlinde, EP; Visser, MR, Quasi-local energy and microcanonical entropy in two-dimensional nearly de Sitter gravity, JHEP, 08, 075, 2022 · Zbl 1522.83242
[90] D.S. Ageev and I.Y. Aref’eva, Thermal density matrix breaks down the Page curve, Eur. Phys. J. Plus137 (2022) 1188 [arXiv:2206.04094] [INSPIRE].
[91] Karch, A.; Sun, H.; Uhlemann, CF, Double holography in string theory, JHEP, 10, 012, 2022 · Zbl 1534.81117
[92] Goswami, K.; Narayan, K., Small Schwarzschild de Sitter black holes, quantum extremal surfaces and islands, JHEP, 10, 031, 2022 · Zbl 1534.83044
[93] A. Roy Chowdhury, A. Saha and S. Gangopadhyay, Role of mutual information in the Page curve, Phys. Rev. D106 (2022) 086019 [arXiv:2207.13029] [INSPIRE].
[94] M.-H. Yu and X.-H. Ge, Entanglement islands in generalized two-dimensional dilaton black holes, Phys. Rev. D107 (2023) 066020 [arXiv:2208.01943] [INSPIRE].
[95] R. Bousso and G. Penington, Entanglement wedges for gravitating regions, Phys. Rev. D107 (2023) 086002 [arXiv:2208.04993] [INSPIRE].
[96] Hu, P-J; Li, D.; Miao, R-X, Island on codimension-two branes in AdS/dCFT, JHEP, 11, 008, 2022 · Zbl 1536.83120
[97] D.S. Ageev et al., Infrared regularization and finite size dynamics of entanglement entropy in Schwarzschild black hole, Phys. Rev. D108 (2023) 046005 [arXiv:2209.00036] [INSPIRE].
[98] C.-S. Chu and R.-X. Miao, Tunneling of Bell Particles, Page Curve and Black Hole Information, arXiv:2209.03610 [INSPIRE].
[99] G. Yadav and N. Joshi, Cosmological and black hole islands in multi-event horizon spacetimes, Phys. Rev. D107 (2023) 026009 [arXiv:2210.00331] [INSPIRE].
[100] Aalsma, L.; Aguilar-Gutierrez, SE; Sybesma, W., An outsider’s perspective on information recovery in de Sitter space, JHEP, 01, 129, 2023 · Zbl 1540.83028
[101] Lu, C-Y; Yu, M-H; Ge, X-H; Tian, L-J, Page curve and phase transition in deformed Jackiw-Teitelboim gravity, Eur. Phys. J. C, 83, 215, 2023
[102] Stepanenko, D.; Volovich, I., Schwarzschild black holes, Islands and Virasoro algebra, Eur. Phys. J. Plus, 138, 688, 2023
[103] Ben-Dayan, I.; Hadad, M.; Wildenhain, E., Islands in the fluid: islands are common in cosmology, JHEP, 03, 077, 2023 · Zbl 07690641
[104] D. Basu, Q. Wen and S. Zhou, Entanglement Islands from Hilbert Space Reduction, arXiv:2211.17004 [INSPIRE].
[105] Kudler-Flam, J.; Kusuki, Y., On quantum information before the Page time, JHEP, 05, 078, 2023 · Zbl 07701893
[106] Emparan, R., Holographic duals of evaporating black holes, JHEP, 05, 182, 2023 · Zbl 07701997
[107] Y.-S. Piao, Implication of the island rule for inflation and primordial perturbations, Phys. Rev. D107 (2023) 123509 [arXiv:2301.07403] [INSPIRE].
[108] Guo, C-Z; Gan, W-C; Shu, F-W, Page curves and entanglement islands for the step-function Vaidya model of evaporating black holes, JHEP, 05, 042, 2023 · Zbl 07701857
[109] Parvizi, S.; Shahbazi, M., Analogue gravity and the island prescription, Eur. Phys. J. C, 83, 705, 2023
[110] Hung, TN; Nam, CH, Compactified extra dimension and entanglement island as clues to quantum gravity, Eur. Phys. J. C, 83, 472, 2023
[111] Wu, C-H; Xu, J., Islands in non-minimal dilaton gravity: exploring effective theories for black hole evaporation, JHEP, 10, 094, 2023 · Zbl 07774699
[112] Cadoni, M.; Oi, M.; Sanna, AP, Evaporation and information puzzle for 2D nonsingular asymptotically flat black holes, JHEP, 06, 211, 2023 · Zbl 07716917
[113] A. Roy Chowdhury, A. Saha and S. Gangopadhyay, Mutual information of subsystems and the Page curve for the Schwarzschild-de Sitter black hole, Phys. Rev. D108 (2023) 026003 [arXiv:2303.14062] [INSPIRE].
[114] D.S. Ageev et al., Entanglement entropy in de Sitter: no pure states for conformal matter, arXiv:2304.12351 [INSPIRE].
[115] Basu, D.; Lin, J.; Lu, Y.; Wen, Q., Ownerless island and partial entanglement entropy in island phases, SciPost Phys., 15, 227, 2023 · Zbl 07906522
[116] H.-S. Jeong, K.-Y. Kim and Y.-W. Sun, Entanglement entropy analysis of dyonic black holes using doubly holographic theory, Phys. Rev. D108 (2023) 126016 [arXiv:2305.18122] [INSPIRE].
[117] C.-W. Tong, D.-H. Du and J.-R. Sun, Island of Reissner-Nordström anti-de Sitter black holes in the large d limit, arXiv:2306.06682 [INSPIRE].
[118] Yu, M-H; Ge, X-H; Lu, C-Y, Page curves for accelerating black holes, Eur. Phys. J. C, 83, 1104, 2023
[119] C.-J. Chou, H.B. Lao and Y. Yang, Page Curve of AdS-Vaidya Model for Evaporating Black Holes, arXiv:2306.16744 [INSPIRE].
[120] S.E. Aguilar-Gutierrez, R. Espíndola and E.K. Morvan-Benhaim, A teleportation protocol in Schwarzschild-de Sitter space, arXiv:2308.13516 [INSPIRE].
[121] Czech, B.; Shuai, S.; Tang, H., Entropies and reflected entropies in the Hayden-Preskill protocol, JHEP, 02, 040, 2024 · Zbl 07837414
[122] V. Franken, H. Partouche, F. Rondeau and N. Toumbas, Closed FRW holography: A time-dependent ER=EPR realization, arXiv:2310.20652 [INSPIRE].
[123] K. Narayan, Extremal surfaces in de Sitter spacetime, Phys. Rev. D91 (2015) 126011 [arXiv:1501.03019] [INSPIRE].
[124] Y. Sato, Comments on Entanglement Entropy in the dS/CFT Correspondence, Phys. Rev. D91 (2015) 086009 [arXiv:1501.04903] [INSPIRE].
[125] Narayan, K., On extremal surfaces and de Sitter entropy, Phys. Lett. B, 779, 214, 2018 · Zbl 1383.83238
[126] K. Doi et al., Pseudoentropy in dS/CFT and Timelike Entanglement Entropy, Phys. Rev. Lett.130 (2023) 031601 [arXiv:2210.09457] [INSPIRE].
[127] K. Narayan, de Sitter space, extremal surfaces, and time entanglement, Phys. Rev. D107 (2023) 126004 [arXiv:2210.12963] [INSPIRE].
[128] G.W. Gibbons and S.W. Hawking, Cosmological Event Horizons, Thermodynamics, and Particle Creation, Phys. Rev. D15 (1977) 2738 [INSPIRE].
[129] Ginsparg, PH; Perry, MJ, Semiclassical Perdurance of de Sitter Space, Nucl. Phys. B, 222, 245, 1983
[130] R. Bousso and S.W. Hawking, Pair creation of black holes during inflation, Phys. Rev. D54 (1996) 6312 [gr-qc/9606052] [INSPIRE].
[131] Bousso, R.; Hawking, SW, (Anti)evaporation of Schwarzschild-de Sitter black holes, Phys. Rev. D, 57, 2436, 1998
[132] Nariai, H., On some static solutions of Einstein’s gravitational field equations in a spherically symmetric case, Sci. Rep. Tóhoku Univ., 34, 160, 1950
[133] Maldacena, J.; Turiaci, GJ; Yang, Z., Two dimensional Nearly de Sitter gravity, JHEP, 01, 139, 2021 · Zbl 1459.83035
[134] Fernandes, K.; Kolekar, KS; Narayan, K.; Roy, S., Schwarzschild de Sitter and extremal surfaces, Eur. Phys. J. C, 80, 866, 2020
[135] S. Shankaranarayanan, Temperature and entropy of Schwarzschild-de Sitter space-time, Phys. Rev. D67 (2003) 084026 [gr-qc/0301090] [INSPIRE].
[136] J. Guven and D. Núñez, Schwarzschild-de Sitter space and its perturbations, Phys. Rev. D42 (1990) 2577 [INSPIRE].
[137] A. Strominger, Les Houches lectures on black holes, in the proceedings of the NATO Advanced Study Institute: Les Houches Summer School, Session 62: Fluctuating Geometries in Statistical Mechanics and Field Theory, Les Houches, France, 2 August-9 September 1994 [hep-th/9501071] [INSPIRE].
[138] Grumiller, D.; Kummer, W.; Vassilevich, DV, Dilaton gravity in two-dimensions, Phys. Rept., 369, 327, 2002 · Zbl 0998.83038
[139] Mertens, TG; Turiaci, GJ, Solvable models of quantum black holes: a review on Jackiw-Teitelboim gravity, Living Rev. Rel., 26, 4, 2023
[140] K. Narayan, Aspects of two-dimensional dilaton gravity, dimensional reduction, and holography, Phys. Rev. D104 (2021) 026007 [arXiv:2010.12955] [INSPIRE].
[141] Bhattacharya, R.; Narayan, K.; Paul, P., Cosmological singularities and 2-dimensional dilaton gravity, JHEP, 08, 062, 2020 · Zbl 1454.83075
[142] Calabrese, P.; Cardy, JL, Entanglement entropy and quantum field theory, J. Stat. Mech., 0406, P06002, 2004 · Zbl 1082.82002
[143] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A42 (2009) 504005 [arXiv:0905.4013] [INSPIRE]. · Zbl 1179.81026
[144] L. Susskind, The Census taker’s hat, arXiv:0710.1129 [INSPIRE].
[145] Calabrese, P.; Cardy, J.; Tonni, E., Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech., 0911, P11001, 2009 · Zbl 1456.81360
[146] Calabrese, P.; Cardy, J.; Tonni, E., Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech., 1101, P01021, 2011 · Zbl 1456.81361
[147] M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].
[148] Pedraza, JF; Svesko, A.; Sybesma, W.; Visser, MR, Semi-classical thermodynamics of quantum extremal surfaces in Jackiw-Teitelboim gravity, JHEP, 12, 134, 2021 · Zbl 1521.83145
[149] J.F. Pedraza, A. Svesko, W. Sybesma and M.R. Visser, Microcanonical action and the entropy of Hawking radiation, Phys. Rev. D105 (2022) 126010 [arXiv:2111.06912] [INSPIRE].
[150] Morvan, EK; van der Schaar, JP; Visser, MR, On the Euclidean action of de Sitter black holes and constrained instantons, SciPost Phys., 14, 022, 2023 · Zbl 07901062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.