×

A weak Galerkin meshless method for incompressible Navier-Stokes equations. (English) Zbl 1542.65161

Summary: A weak Galerkin meshless (WGM) method is proposed and analyzed in this paper for the incompressible stationary Navier-Stokes equations. In Galerkin meshless methods, we have to deal with the integration of non-polynomial functions, and then the often-used high-order Gauss quadrature rules not only lead to high computational cost but also seriously damage the optimal convergence. In the WGM method, a weakly defined gradient is introduced to facilitate numerical integration and restore the optimal convergence. Stability of the WGM method is analyzed, optimal order error estimates of the velocity and the pressure are derived, and convergence of the Oseen iteration for dealing with the nonlinear convection term is proved. Theoretical results reveal the basic principle of selecting quadrature rules in meshless methods to ensure that the optimal convergence is completely independent of numerical integration. Numerical results show the performance of the proposed WGM method and verify theoretical results.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D30 Numerical integration
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
76M10 Finite element methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Girault, V.; Raviart, P. A., Finite Element Approximation of the Navier-Stokes Equations, 1979, Springer: Springer Berlin · Zbl 0413.65081
[2] He, Y. N.; Wang, A. W., A simplified two-level method for the steady Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 197, 1568-1576, 2008 · Zbl 1194.76120
[3] He, Y. N.; Li, J., Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 198, 1351-1359, 2009 · Zbl 1227.76031
[4] He, Y. N., Finite element iterative methods for the 3D steady Navier-Stokes equations, Entropy, 23, 1659, 2021
[5] Temam, R., Navier-stokes equations, (Theory and Numerical Analysis, 1984, Elsevier: Elsevier Amsterdam) · Zbl 0572.35083
[6] Wang, J. P.; Wang, X. S.; Ye, X., Finite element methods for the Navier-Stokes equations by H(div) elements, J. Comput. Math., 26, 410-436, 2008 · Zbl 1174.76012
[7] Dehghan, M.; Gharibi, Z., Numerical analysis of fully discrete energy stable weak Galerkin finite element scheme for a coupled Cahn-Hilliard-Navier-Stokes phase-field model, Appl. Math. Comput., 410, Article 126487 pp., 2021 · Zbl 1510.82056
[8] Hu, X. Z.; Mu, L.; Ye, X., A weak Galerkin finite element method for the Navier-Stokes equations, J. Comput. Appl. Math., 362, 614-625, 2019 · Zbl 1422.65389
[9] Zhang, T.; Lin, T., An analysis of a weak Galerkin finite element method for stationary Navier-Stokes problems, J. Comput. Appl. Math., 362, 484-497, 2019 · Zbl 1418.65187
[10] Dehghan, M.; Gharibi, Z., An analysis of weak Galerkin finite element method for a steady state Boussinesq problem, J. Comput. Appl. Math., 406, Article 114029 pp., 2022 · Zbl 1482.35168
[11] Sedaghatjoo, Z.; Dehghan, M.; Hosseinzadeh, H., Numerical solution of 2D Navier-Stokes equation discretized via boundary elements method and finite difference approximation, Eng. Anal. Bound. Elem., 96, 64-77, 2018 · Zbl 1403.76102
[12] Li, X. L., The meshless Galerkin boundary node method for Stokes problems in three dimensions, Internat. J. Numer. Methods Engrg., 88, 442-472, 2011 · Zbl 1242.76244
[13] Choe, H. J.; Kim, D. W.; Kim, H. H.; Kim, Y., Meshless method for the stationary incompressible Navier-Stokes equations, Discrete Contin. Dyn. Syst. Ser. B, 1, 495-526, 2001 · Zbl 1016.76058
[14] Ebrahimijahan, A.; Dehghan, M.; Abbaszadeh, M., Simulation of the incompressible Navier-Stokes via integrated radial basis function based on finite difference scheme, Eng. Comput., 38, 5069-5090, 2022
[15] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Internat. J. Numer. Methods Engrg., 37, 229-256, 1994 · Zbl 0796.73077
[16] Dehghan, M.; Abbaszadeh, M., Proper orthogonal decomposition variational multiscale element free Galerkin (POD-VMEFG) meshless method for solving incompressible Navier-Stokes equation, Comput. Methods Appl. Mech. Engrg., 311, 856-888, 2016 · Zbl 1439.76060
[17] Abbaszadeh, M.; Dehghan, M., Investigation of the oldroyd model as a generalized incompressible Navier-Stokes equation via the interpolating stabilized element free Galerkin technique, Appl. Numer. Math., 150, 274-294, 2020 · Zbl 1444.76083
[18] Babuška, I.; Banerjee, U.; Osborn, J. E.; Li, Q. L., Quadrature for meshless methods, Internat. J. Numer. Methods Engrg., 76, 1434-1470, 2008 · Zbl 1195.65165
[19] Chen, J. S.; Hillman, M.; Chi, S. W., Meshfree methods: Progress made after 20 years, J. Eng. Mech., 143, Article 04017001 pp., 2017
[20] Wang, D. D.; Wu, J. C., An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature, Comput. Methods Appl. Mech. Engrg., 349, 628-672, 2019 · Zbl 1441.74278
[21] Wu, J. C.; Wang, D. D., An accuracy analysis of Galerkin meshfree methods accounting for numerical integration, Comput. Methods Appl. Mech. Engrg., 375, Article 113631 pp., 2021 · Zbl 1506.65232
[22] Zhang, Q. H.; Banerjee, U., Numerical integration in Galerkin meshless methods, applied to elliptic Neumann problem with non-constant coefficients, Adv. Comput. Math., 37, 453-492, 2012 · Zbl 1254.65124
[23] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Internat. J. Numer. Methods Engrg., 50, 435-466, 2001 · Zbl 1011.74081
[24] Duan, Q. L.; Gao, X.; Wang, B. B.; Li, X. K.; Zhang, H. W.; Belytschko, T.; Shao, Y. L., Consistent element-free Galerkin method, Internat. J. Numer. Methods Engrg., 99, 79-101, 2014 · Zbl 1352.65493
[25] Li, X. L., Theoretical analysis of the reproducing kernel gradient smoothing integration technique in Galerkin meshless methods, J. Comput. Math., 41, 483-506, 2023
[26] Li, X. L.; Li, S. L., Effect of an efficient numerical integration technique on the element-free Galerkin method, Appl. Numer. Math., 193, 204-225, 2023 · Zbl 1528.65115
[27] Du, H. H.; Wu, J. C.; Wang, D. D.; Chen, J., A unified reproducing kernel gradient smoothing Galerkin meshfree approach to strain gradient elasticity, Comput. Mech., 70, 73-100, 2022 · Zbl 1493.74117
[28] Li, X. L., Element-free Galerkin analysis of Stokes problems using the reproducing kernel gradient smoothing integration, J. Sci. Comput., 96, 43, 2023 · Zbl 07708344
[29] Wang, J. P.; Ye, X., A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241, 103-115, 2013 · Zbl 1261.65121
[30] Ciarlet, P. G., The Finite Element Method for Elliptic Problems, 1978, North-Holland: North-Holland Amsterdam · Zbl 0383.65058
[31] Adams, R., Sobolev Spaces, 1970, Academic Press: Academic Press New York
[32] Lancaster, P.; Salkauskas, K., Surface generated by moving least squares methods, Math. Comp., 37, 141-158, 1981 · Zbl 0469.41005
[33] Babuška, I.; Banerjee, U.; Osborn, J. E., Survey of meshless and generalized finite element methods: A unified approach, Acta Numer., 12, 1-125, 2003 · Zbl 1048.65105
[34] Li, X. L., A stabilized element-free Galerkin method for the advection-diffusion-reaction problem, Appl. Math. Lett., 146, Article 108831 pp., 2023 · Zbl 1522.65219
[35] Mirzaei, D., Analysis of moving least squares approximation revisited, J. Comput. Appl. Math., 282, 237-250, 2015 · Zbl 1309.65137
[36] Li, X. L., Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces, Appl. Numer. Math., 99, 77-97, 2016 · Zbl 1329.65274
[37] Li, X. L.; Li, S. L., Meshless Galerkin analysis of the generalized Stokes problem, Comput. Math. Appl., 144, 164-181, 2023 · Zbl 1538.65536
[38] Zhang, T.; Li, X. L., A nitsche-based element-free Galerkin method for semilinear elliptic problems, Adv. Appl. Math. Mech., 16, 24-46, 2023 · Zbl 1538.65573
[39] Wu, J. C.; Wu, X. Y.; Zhao, Y. B.; Wang, D. D., A rotation-free Hellinger-Reissner meshfree thin plate formulation naturally accommodating essential boundary conditions, Eng. Anal. Bound. Elem., 154, 122-140, 2023 · Zbl 1537.74253
[40] Wu, J. C.; Wu, X. Y.; Zhao, Y. B.; Wang, D. D., A consistent and efficient method for imposing meshfree essential boundary conditions via Hellinger-Reissner variational principle, Chin. J. Theor. Appl. Mech., 54, 3283-3296, 2022
[41] Kovasznay, L. I.G., Laminar flow behind a two-dimensional grid, Proc. Camb. Philos. Soc., 44, 58-62, 1948 · Zbl 0030.22902
[42] Park, S. K.; Jo, G.; Choe, H. J., Existence and stability in the virtual interpolation point method for the Stokes equations, J. Comput. Phys., 307, 535-549, 2016 · Zbl 1351.76177
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.