×

Ergodicity bounds for stable Ornstein-Uhlenbeck systems in Wasserstein distance with applications to cutoff stability. (English) Zbl 1541.60061

Summary: This article establishes cutoff stability also known as abrupt thermalization for generic multidimensional Hurwitz stable Ornstein-Uhlenbeck systems with (possibly degenerate) Lévy noise at fixed noise intensity. The results are based on several ergodicity quantitative lower and upper bounds some of which make use of the recently established shift linearity property of the Wasserstein-Kantorovich-Rubinstein distance by the authors. It covers such irregular systems like Jacobi chains and more general networks of coupled harmonic oscillators with a heat bath (including Lévy excitations) at constant temperature on the outer edges and the so-called Brownian gyrator.
©2023 American Institute of Physics

MSC:

60J65 Brownian motion
60G51 Processes with independent increments; Lévy processes
60G50 Sums of independent random variables; random walks

References:

[1] von Smoluchowski, M., Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen, Ann. Phys. (Berlin), 21, 14, 756-780 (1906) · JFM 37.0814.03 · doi:10.1002/andp.19063261405
[2] Langevin, P., Sur la théorie du mouvement Brownien [On the theory of Brownian motion], C. R. Acad. Sci. Paris, 146, 530-533 (1908) · JFM 39.0847.03 · doi:10.1119/1.18725
[3] Uhlenbeck, G. E.; Ornstein, L. S., On the theory of Brownian motion, Phys. Rev., 36, 5, 823-841 (1930) · JFM 56.1277.03 · doi:10.1103/PhysRev.36.823
[4] Jacobsen, M., Laplace and the origin of the Ornstein-Uhlenbeck process, Bernoulli, 2, 3, 271-286 (1996) · doi:10.2307/3318524
[5] Barucca, P., Localization in covariance matrices of coupled heterogeneous Ornstein-Uhlenbeck processes, Phys. Rev. E, 90, 062129 (2014) · doi:10.1103/PhysRevE.90.062129
[6] Brzeźniak, Z.; Zabczyk, J., Regularity of Ornstein-Uhlenbeck processes driven by a Lévy white noise, Potential Anal., 32, 2, 153-188 (2010) · Zbl 1187.60048 · doi:10.1007/s11118-009-9149-1
[7] Gilson, M.; Tagliazucchi, E.; Cofré, R., Entropy production of multivariate Ornstein-Uhlenbeck processes correlates with consciousness levels in the human brain, Phys. Rev. E, 107, 024121 (2023) · doi:10.1103/PhysRevE.107.024121
[8] Godrèche, C.; Luck, J.-M., Characterising the nonequilibrium stationary states of Ornstein-Uhlenbeck processes, J. Phys. A: Math. Theor., 52, 035002 (2019) · Zbl 1422.82024 · doi:10.1088/1751-8121/aaf190
[9] Janakiraman, D.; Sebastian, K. L., Unusual eigenvalue spectrum and relaxation in the Lévy-Ornstein-Uhlenbeck process, Phys. Rev. E: Stat. Nonlinear, Soft Matter Phys., 90, 4, 040101 (2014) · doi:10.1103/PhysRevE.90.040101
[10] Lachaud, B., Cut-off and hitting times of a sample of Ornstein-Uhlenbeck process and its average, J. Appl. Probab., 42, 4, 1069-1080 (2005) · Zbl 1092.60031 · doi:10.1239/jap/1134587817
[11] Mikami, T., Asymptotic expansions of the invariant density of a Markov process with a small parameter, Ann. Inst. H. Poincaré Sect. B, 24, 3, 403-424 (1988) · Zbl 0653.60027
[12] Sarkar, R.; Santra, I.; Basu, U., Stationary states of activity-driven harmonic chains, Phys. Rev. E, 107, 014123 (2023) · doi:10.1103/PhysRevE.107.014123
[13] Sato, K.; Yamazato, M., Operator-self-decomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type, Stochastic Process. Appl., 17, 1, 73-100 (1984) · Zbl 0533.60021 · doi:10.1016/0304-4149(84)90312-0
[14] Simon, T., On the absolute continuity of multidimensional Ornstein-Uhlenbeck processes, Probab. Theory Relat. Fields, 151, 1-2, 173-190 (2011) · Zbl 1238.60067 · doi:10.1007/s00440-010-0296-5
[15] Singh, R.; Ghosh, D.; Adhikari, R., Fast Bayesian inference of the multivariate Ornstein-Uhlenbeck process, Phys. Rev. E, 98, 012136 (2018) · doi:10.1103/PhysRevE.98.012136
[16] Thomas, P. J.; Lindner, B., Phase descriptions of a multidimensional Ornstein-Uhlenbeck process, Phys. Rev. E, 99, 062221 (2019) · doi:10.1103/PhysRevE.99.062221
[17] Wang, J., Exponential ergodicity and strong ergodicity for SDEs driven by symmetric \(\alpha \)-stable processes, Appl. Math. Lett., 26, 6, 654-658 (2013) · Zbl 1266.60109 · doi:10.1016/j.aml.2013.01.004
[18] Dinh, T. H.; Le, C. T.; Vo, B. K.; Vuong, T. D., The \(\alpha \)-z-Bures Wasserstein divergence, Linear Algebra Appl., 624, 267-280 (2021) · Zbl 07355223 · doi:10.1016/j.laa.2021.04.007
[19] Dowson, D. C.; Landau, B. V., The Fréchet distance between multivariate normal distributions, J. Multivar. Anal., 12, 3, 450-455 (1982) · Zbl 0501.62038 · doi:10.1016/0047-259X(82)90077-X
[20] Masarotto, V.; Panaretos, V. M.; Zemel, Y., Procrustes metrics on covariance operators and optimal transportation of Gaussian processes, Sankhya A, 81, 1, 172-213 (2019) · Zbl 1420.60048 · doi:10.1007/s13171-018-0130-1
[21] Minh, H. Q., Alpha procrustes metrics between positive definite operators: A unifying formulation for the Bures-Wasserstein and log-Euclidean/log-Hilbert-Schmidt metrics, Linear Algebra Appl., 636, 25-68 (2022) · Zbl 1491.15037 · doi:10.1016/j.laa.2021.11.011
[22] Olkin, I.; Pukelsheim, F., The distance between two random vectors with given dispersion matrices, Linear Algebra Appl., 48, 257-263 (1982) · Zbl 0527.60015 · doi:10.1016/0024-3795(82)90112-4
[23] Zemel, Y.; Panaretos, V. M., Fréchet means and procrustes analysis in Wasserstein space, Bernoulli, 25, 2, 932-976 (2019) · Zbl 1431.62132 · doi:10.3150/17-BEJ1009
[24] Chigarev, V.; Kazakov, A.; Pikovsky, A., Kantorovich-Rubinstein-Wasserstein distance between overlapping attractor and repeller, Chaos, 30, 073114 (2020) · Zbl 1455.37040 · doi:10.1063/5.0007230
[25] Czechowski, Z.; Telesca, L., Detrended fluctuation analysis of the Ornstein-Uhlenbeck process: Stationarity versus nonstationarity, Chaos, 26, 113109 (2016) · Zbl 1378.62126 · doi:10.1063/1.4967390
[26] Panaretos, V. M. and Zemel, Y., An Invitation to Statistics in Wasserstein Space, Springer Briefs in Probability and Mathematical Statistics (Springer, 2020). · Zbl 1433.62010
[27] Pigoli, D.; Aston, J. A. D.; Dryden, I. L.; Secchi, P., Distances and inference for covariance operators, Biometrika, 101, 2, 409-422 (2014) · Zbl 1452.62994 · doi:10.1093/biomet/asu008
[28] Santoro, L. V.; Panaretos, V. M.
[29] Barrera, G.; Lukkarinen, J., Quantitative control of Wasserstein distance between Brownian motion and the Goldstein-Kac telegraph process, Ann. Inst. Henri Poincaré Probab. Stat., 59, 2, 933-982 (2023) · Zbl 1532.60088
[30] Givens, C. R.; Shortt, R. M., A class of Wasserstein metrics for probability distributions, Mich. Math. J., 31, 2, 231-240 (1984) · Zbl 0582.60002 · doi:10.1307/mmj/1029003026
[31] Takatsu, A., Wasserstein geometry of Gaussian measures, Osaka J. Math., 48, 4, 1005-1026 (2011) · Zbl 1245.60013 · doi:10.18910/4973
[32] Barrera, G.; Högele, M. A.; Pardo, J. C., Cutoff thermalization for Ornstein-Uhlenbeck systems with small Lévy noise in the Wasserstein distance, J. Stat. Phys., 184, 3, 27 (2021) · Zbl 1473.60067 · doi:10.1007/s10955-021-02815-0
[33] Bhatia, R.; Jain, T.; Lim, Y., Inequalities for the Wasserstein mean of positive definite matrices, Linear Algebra Appl., 576, 108-123 (2019) · Zbl 1418.15017 · doi:10.1016/j.laa.2018.03.017
[34] Bhatia, R.; Jain, T.; Lim, Y., On the Bures-Wasserstein distance between positive definite matrices, Expo. Math., 37, 2, 165-191 (2019) · Zbl 1437.15044 · doi:10.1016/j.exmath.2018.01.002
[35] Chhachhi, S.; Teng, F.
[36] Figalli, A. and Glaudo, F., An Invitation to Optimal Transport, Wasserstein Distances, and Gradient Flows, EMS Textbook in Mathematics (EMS Press, Berlin, 2021). · Zbl 1472.49001
[37] Gelbrich, M., On a formula for the \(L^2\) Wasserstein metric between measures on Euclidean and Hilbert spaces, Math. Nachr., 147, 185-203 (1990) · Zbl 0711.60003 · doi:10.1002/mana.19901470121
[38] “Including papers from the summer school ‘Optimal transportation: Theory and applications’ held at the University of Grenoble I,” in Optimal Transportation. Theory and Applications, London Mathematical Society Lecture Note Series Vol. 413, edited by Y. Ollivier, H. Pajot, and C. Villani (Cambridge University Press, Cambridge, 2014). · Zbl 1301.00076
[39] Peyré, G.; Cuturi, M., Computational optimal transport: With applications to data science, Found. Trends Mach. Learn., 11, 5-6, 355-607 (2019) · Zbl 1475.68011 · doi:10.1561/2200000073
[40] Villani, C., Optimal Transport, Old and New (2009), Springer · Zbl 1156.53003
[41] Barrera, J.; Lachaud, B.; Ycart, B., Cut-off for \(n\)-tuples of exponentially converging processes, Stochastic Process. Appl., 116, 10, 1433-1446 (2006) · Zbl 1103.60023 · doi:10.1016/j.spa.2006.03.003
[42] Barrera, J.; Ycart, B., Bounds for left and right window cutoffs, ALEA Lat. Am. J. Probab. Math. Stat., 11, 445-458 (2014) · Zbl 1346.60040
[43] Basu, R.; Hermon, J.; Peres, Y., Characterization of cutoff for reversible Markov chains, Ann. Probab., 45, 3, 1448-1487 (2017) · Zbl 1374.60129 · doi:10.1214/16-AOP1090
[44] Bayer, D.; Diaconis, P., Trailing the dovetail shuffle to its lair, Ann. Appl. Probab., 2, 2, 294-313 (1992) · Zbl 0757.60003 · doi:10.1214/aoap/1177005705
[45] Ben-Hamou, A.; Lubetzky, E.; Peres, Y., Comparing mixing times on sparse random graphs, Ann. Inst. Henri Poincaré Probab. Stat., 55, 2, 1116-1130 (2019) · Zbl 1466.60141 · doi:10.1214/18-AIHP911
[46] Bertoncini, O.; Barrera, J.; Fernández, R., Cut-off and exit from metastability: Two sides of the same coin, C. R. Math. Acad. Sci. Paris, 346, 11-12, 691-696 (2008) · Zbl 1141.60058 · doi:10.1016/j.crma.2008.04.007
[47] Bordenave, C.; Caputo, P.; Salez, J., Cutoff at the ‘entropic time’ for sparse Markov chains, Probab. Theory Relat. Fields, 173, 1-2, 261-292 (2019) · Zbl 1480.60202 · doi:10.1007/s00440-018-0834-0
[48] Bordenave, C.; Caputo, P.; Salez, J., Random walk on sparse random digraphs, Probab. Theory Relat. Fields, 170, 3-4, 933-960 (2018) · Zbl 1383.05294 · doi:10.1007/s00440-017-0796-7
[49] Chen, G.; Saloff-Coste, L., The cutoff phenomenon for ergodic Markov processes, Electron. J. Probab., 13, 3, 26-78 (2008) · Zbl 1190.60007 · doi:10.1214/EJP.v13-474
[50] Hermon, J.; Salez, J., Cutoff for the mean-field zero-range process with bounded monotone rates, Ann. Probab., 48, 2, 742-759 (2020) · Zbl 1442.82033 · doi:10.1214/19-AOP1373
[51] Jonsson, G. F. and Trefethen, L. N., “A numerical analysis looks at the ‘cut-off phenomenon’ in card shuffling and other Markov chains,” In Numerical Analysis 1997 (Dundee, 1997) (Addison Wesley Longman, Harlow, 1998), pp. 150-178. · Zbl 0902.65017
[52] Labbé, C.; Lacoin, H., Cutoff phenomenon for the asymmetric simple exclusion process and the biased card shuffling, Ann. Probab., 47, 3, 1541-1586 (2019) · Zbl 1466.60152 · doi:10.1214/18-AOP1290
[53] Lacoin, H., The cutoff profile for the simple exclusion process on the circle, Ann. Probab., 44, 5, 3399-3430 (2016) · Zbl 1410.37008 · doi:10.1214/15-AOP1053
[54] Lancia, C.; Nardi, F.; Scoppola, B., Entropy-driven cutoff phenomena, J. Stat. Phys., 149, 1, 108-141 (2012) · Zbl 1263.82026 · doi:10.1007/s10955-012-0584-9
[55] Levin, D.; Luczak, M.; Peres, Y., Glauber dynamics for mean-field Ising model: Cut-off, critical power law, and metastability, Probab. Theory Relat. Fields, 146, 1, 223-265 (2010) · Zbl 1187.82076 · doi:10.1007/s00440-008-0189-z
[56] Levin, D.; Peres, Y.; Wilmer, E., Markov Chains and Mixing Times (2009), American Mathematical Society: American Mathematical Society, Providence · Zbl 1160.60001
[57] Lubetzky, E.; Sly, A., Cutoff for the Ising model on the lattice, Invent. Math., 191, 3, 719-755 (2013) · Zbl 1273.82014 · doi:10.1007/s00222-012-0404-5
[58] Méliot, P.-L., The cut-off phenomenon for Brownian motions on compact symmetric spaces, Potential Anal., 40, 4, 427-509 (2014) · Zbl 1295.58011 · doi:10.1007/s11118-013-9356-7
[59] Trefethen, L. N.; Trefethen, L. M., How many shuffles to randomize a deck of cards?, Proc. R. Soc. London, Ser. A, 456, 8, 2561-2568 (2000) · Zbl 0968.60080 · doi:10.1098/rspa.2000.0625
[60] Ycart, B., Cutoff for samples of Markov chains, ESAIM Probab. Stat., 3, 89-106 (1999) · Zbl 0932.60077 · doi:10.1051/ps:1999104
[61] Aldous, D., “Random walks on finite groups and rapidly mixing Markov chains,” in Seminar on Probability, XVII, Lecture Notes in Mathematics Vol. 986 (Springer, Berlin, 1983), pp. 243-297. · Zbl 0514.60067
[62] Aldous, D.; Diaconis, P., Strong uniform times and finite random walks, Adv. Appl. Math., 8, 1, 69-97 (1987) · Zbl 0631.60065 · doi:10.1016/0196-8858(87)90006-6
[63] Aldous, D.; Diaconis, P., Shuffling cards and stopping times, Am. Math. Mon., 93, 5, 333-348 (1986) · Zbl 0603.60006 · doi:10.1080/00029890.1986.11971821
[64] Diaconis, P., The cut-off phenomenon in finite Markov chains, Proc. Natl. Acad. Sci. U.S.A., 93, 4, 1659-1664 (1996) · Zbl 0849.60070 · doi:10.1073/pnas.93.4.1659
[65] Kastoryano, M. J.; Reeb, D.; Wolf, M. M., A cutoff phenomenon for quantum Markov chains, J. Phys. A, 45, 075307 (2012) · Zbl 1236.81141 · doi:10.1088/1751-8113/45/7/075307
[66] Bayati, B.; Owahi, H.; Koumoutsakos, P., A cutoff phenomenon in accelerated stochastic simulations of chemical kinetics via flow averaging (FLAVOR-SSA), J. Chem. Phys., 133, 244-117 (2010) · doi:10.1063/1.3518419
[67] Kastoryano, M. J.; Wolf, M. M.; Eisert, J., Precisely timing dissipative quantum information processing, Phys. Rev. Lett., 110, 110501 (2013) · doi:10.1103/PhysRevLett.110.110501
[68] Chleboun, P.; Smith, A., Cutoff for the square plaquette model on a critical length scale, Ann. Appl. Probab., 31, 2, 668-702 (2021) · Zbl 1476.60132 · doi:10.1214/20-AAP1601
[69] Murray, R. W.; Pego, R. L., Cutoff estimates for the Becker-Döring equations, Commun. Math. Sci., 15, 1685-1702 (2017) · Zbl 1386.34020 · doi:10.4310/CMS.2017.v15.n6.a10
[70] Murray, R. W.; Pego, R. L., Algebraic decay to equilibrium for the Becker-Döring equations, SIAM J. Math. Anal., 48, 4, 2819-2842 (2016) · Zbl 1362.34021 · doi:10.1137/15M1038578
[71] Johnson, P. D.; Ticozzi, F.; Viola, L., Exact stabilization of entangled states in finite time by dissipative quantum circuits, Phys. Rev. A, 96, 012308 (2017) · doi:10.1103/PhysRevA.96.012308
[72] Vernier, E., Mixing times and cutoffs in open quadratic fermionic systems, Scipost Phys., 9, 49, 1-30 (2020) · doi:10.21468/SciPostPhys.9.4.049
[73] D’Onofrio, G.; Tamborrino, M.; Lansky, P., The Jacobi diffusion process as a neuronal model, Chaos, 28, 103119 (2018) · Zbl 1400.92090 · doi:10.1063/1.5051494
[74] Wang, M.; Christov, I. C., Cutting and shuffling with diffusion: Evidence for cut-offs in interval exchange maps, Phys. Rev. E, 98, 022221 (2018) · doi:10.1103/PhysRevE.98.022221
[75] Liang, T. and West, M., “Numerical evidence for cutoffs in chaotic microfluidic mixing,” in Proceedings of the ASME 2008 Dynamic Systems and Control Conference, Parts A and B, Ann Arbor, Michigan, 20-22 October (ASME, 2008), pp. 1405-1412.
[76] Barrera, G., Abrupt convergence for a family of Ornstein-Uhlenbeck processes, Braz. J. Probab. Stat., 32, 1, 188-199 (2018) · Zbl 1404.60109 · doi:10.1214/16-BJPS337
[77] Barrera, G., Högele, M. A., and Pardo, J. C., “The cutoff phenomenon in Wasserstein distance for nonlinear stable Langevin systems with small Lévy noise,” J. Dyn. Differ. Equ. (published online). · Zbl 07818460
[78] Barrera, G.; Högele, M. A.; Pardo, J. C., The cutoff phenomenon in total variation for nonlinear Langevin systems with small layered stable noise, Electron. J. Probab., 26, 119, 1-76 (2021) · Zbl 1482.37009 · doi:10.1214/21-EJP685
[79] Barrera, G.; Högele, M. A.; Pardo, J. C., The cutoff phenomenon for the stochastic heat and the wave equation subject to small Lévy noise, Stoch. Partial Differ. Equ. Anal. Comput., 11, 1164-1202 (2022) · Zbl 1527.60043 · doi:10.1007/s40072-022-00257-7
[80] Barrera, G.; Jara, M., Abrupt convergence of stochastic small perturbations of one dimensional dynamical systems, J. Stat. Phys., 163, 1, 113-138 (2016) · Zbl 1364.37116 · doi:10.1007/s10955-016-1468-1
[81] Barrera, G.; Jara, M., Thermalisation for small random perturbation of hyperbolic dynamical systems, Ann. Appl. Probab., 30, 3, 1164-1208 (2020) · Zbl 1469.60303 · doi:10.1214/19-AAP1526
[82] Barrera, G.; Liu, S., A switch convergence for a small perturbation of a linear recurrence equation, Braz. J. Probab. Stat., 35, 2, 224-241 (2021) · Zbl 1471.60103 · doi:10.1214/20-BJPS474
[83] Barrera, G.; Pardo, J. C., Cut-off phenomenon for Ornstein-Uhlenbeck processes driven by Lévy processes, Electron. J. Probab., 25, 15, 1-33 (2020) · Zbl 1468.60057 · doi:10.1214/20-EJP417
[84] Applebaum, D., Lévy Processes and Stochastic Calculus (2004), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1073.60002
[85] Mao, X., Stochastic Differential Equations and Applications (2008), Horwood Publishing Limited: Horwood Publishing Limited, Chichester
[86] Protter, P., Stochastic Integration and Differential Equations. A New Approach, Applications of Mathematics Vol. 21 (Springer-Verlag, Berlin, 1990). · Zbl 0694.60047
[87] Sato, K., Lévy Processes and Infinitely Divisible Distributions (1999), Cambridge University Press · Zbl 0973.60001
[88] Barrera, G.; Högele, M. A.; Pardo, J. C.
[89] Barrera, G.; Högele, M. A.; Pardo, J. C.; Pavlyukevich, I.
[90] Pavliotis, G. A., Stochastic Processes and Applications, Diffusion Processes, the Fokker-Planck and Langevin Equations (2014), Springer: Springer, New York · Zbl 1318.60003
[91] Bátkai, A., Kramar Fijavž, M., and Rhandi, A., “Positive operator semigroups. From finite to infinite dimensions,” in Operator Theory: Advances and Applications, edited by R. Nagel and U. Schlotterbeck (Birkhäuser/Springer, Cham, 2017), Vol. 257. · Zbl 1420.47001
[92] Bhatia, R., Positive Definite Matrices, Princeton Series in Applied Mathematics (Princeton University Press, Princeton, 2007). · Zbl 1133.15017
[93] Lancaster, P. and Tismenetsky, M., The Theory of Matrices, 2nd ed., Computer Science and Applied Mathematics (Academic Press, Orlando, 1985). · Zbl 0558.15001
[94] Gairing, J. M.; Högele, M. A.; Kosenkova, T.; Monahan, A. H., How close are time series to power tail Lévy diffusions?, Chaos, 27, 073112 (2017) · Zbl 06876861 · doi:10.1063/1.4986496
[95] Hall, B., Lie Groups, Lie Algebras, and Representations. An Elementary Introduction, 2nd ed., Springer Graduate Texts in Mathematics Vol. 222 (Springer, 2015). · Zbl 1316.22001
[96] Wang, J., On the exponential ergodicity of Lévy-driven Ornstein-Uhlenbeck processes, J. Appl. Probab., 49, 4, 990-1004 (2012) · Zbl 1258.60037 · doi:10.1239/jap/1354716653
[97] Kallianpur, G. and Sundar, P., Stochastic Analysis and Diffusion Processes, Oxford Graduate Texts in Mathematics Vol. 24 (Oxford University Press, Oxford, 2014), xii+352, p. MR-3156223. · Zbl 1303.60003
[98] Masuda, H., On Multidimensional Ornstein-Uhlenbeck process driven by a general Lévy process, Bernoulli, 10, 1, 97-120 (2004) · Zbl 1048.60060 · doi:10.3150/bj/1077544605
[99] Jameson, A., Solution of the equation \(AX+XB=C\) by inversion of an \(M\timesM\) or \(N\timesN\) matrix, SIAM J. Appl. Math., 16, 1020-1023 (1968) · Zbl 0169.35202 · doi:10.1137/0116083
[100] Du Buisson, J.; Touchette, H., Dynamical large deviations of linear diffusions, Phys. Rev. E, 107, 054111 (2023) · doi:10.1103/PhysRevE.107.054111
[101] Baldassarri, A.; Puglisi, A.; Sesta, L., Engineered swift equilibration of a Brownian gyrator, Phys. Rev. E, 102, 030105(R) (2020) · doi:10.1103/PhysRevE.102.030105
[102] Chabot, J.; Pedraza, J.; Luitel, P., Stochastic gene expression out-of-steady-state in the cyanobacterial circadian clock, Nature, 450, 1249-1252 (2007) · doi:10.1038/nature06395
[103] Raquépas, R., A note on Harris ergodic theorem, controllability and perturbations of harmonic networks, Ann. Henri Poincaré, 20, 605-629 (2019) · Zbl 1407.93073 · doi:10.1038/nature06395
[104] Jakšić, V.; Pillet, C.; Shirikyan, A., Entropic fluctuations in thermally driven harmonic networks, J. Stat. Phys., 166, 926-1015 (2017) · Zbl 1414.82023 · doi:10.1007/s10955-016-1625-6
[105] Bonetto, F.; Lebowitz, J. L.; Lukkarinen, J., Fourier’s law for a harmonic crystal with self-consistent stochastic reservoirs, J. Stat. Phys., 116, 1-4, 783-813 (2004) · Zbl 1142.82367 · doi:10.1023/B:JOSS.0000037232.14365.10
[106] Cuneo, N.; Eckmann, J. P.; Hairer, M.; Rey-Bellet, L., Non-equilibrium steady states for networks of oscillators, Electron. J. Probab., 23, 1, 28 (2018) · Zbl 1397.82033 · doi:10.1214/18-EJP177
[107] Schuss, Z., “Brownian dynamics at boundaries and interfaces,” in Physics, Chemistry, and Biology (Springer, New York, 2013). · Zbl 1305.60006
[108] Barrera, J.; Bertoncini, O.; Fernández, R., Abrupt convergence and escape behavior for birth and death chains, J. Stat. Phys., 137, 4, 595-623 (2009) · Zbl 1195.60115 · doi:10.1007/s10955-009-9861-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.