×

Guaranteed cost control of fractional-order switched systems with mixed time-varying delays. (English) Zbl 1538.34302

Summary: This research paper investigates the problem of guaranteed cost control for a specific class of fractional-order switched systems characterized by both discrete and distributed time delays. By employing the linear matrix inequality (LMI) approach combined with the refined fractional-order Razumikhin theorem, a constructive geometric design of switching laws is developed to design a guaranteed cost controller ensuring the closed loop system not only asymptotically stable but also guarantees an adequate level of performance. The obtained conditions are dependent on the delays arising from the upper bound of the distributed time delays. These conditions are formulated in the form of linear matrix inequalities, which offers the advantage of efficient solvability using established convex algorithms. Two numerical examples with simulation results are provided to validate the efficacy of the proposed approach.

MSC:

34K35 Control problems for functional-differential equations
34K20 Stability theory of functional-differential equations
34K39 Discontinuous functional-differential equations
34K37 Functional-differential equations with fractional derivatives
Full Text: DOI

References:

[1] Aghayan, ZS; Alfi, A.; Machado, JT, Guaranteed cost-based feedback control design for fractional-order neutral systems with input-delayed and nonlinear perturbations, ISA Trans, 131, 95-107 (2022)
[2] Aghayan, ZS; Alfi, A.; Mousavi, Y.; Kucukdemiral, IB; Fekih, A., Guaranteed cost robust output feedback control design for fractional-order uncertain neutral delay systems, Chaos Solit Fract, 163 (2022) · Zbl 1507.93174
[3] Balochian, S.; Sedigh, AK, Sufficient condition for stabilization of linear time invariant fractional order switched systems and variable structure control stabilizers, ISA Trans, 51, 1, 65-73 (2012)
[4] Boy, S.; Ghaoui, E.; Feron, F.; Balakrisshnan, V., Linear matrix inequalities in system and control theory (1994), Philadenphia: SIAM, Philadenphia · Zbl 0816.93004
[5] Cardoso, LC; Dos Santos, FLP; Camargo, RF, Analysis of fractional-order models for hepatitis B, Computat Appl Math, 37, 4570-4586 (2018) · Zbl 1401.92178
[6] Chakraverty, S.; Jena, RM; Jena, SK, Time-fractional order biological systems with uncertain parameters (2020), San Rafael: Morgan & Claypool Publishers, San Rafael · Zbl 1465.92002
[7] Chang, S.; Peng, T., Adaptive guaranteed cost control of systems with uncertain parameters, IEEE Trans Autom Control, 17, 4, 474-483 (1972) · Zbl 0259.93018
[8] Chen, WC, Nonlinear dynamics and chaos in a fractional-order financial system, Chaos Solit Fract, 36, 5, 1305-1314 (2008)
[9] Chen, X.; Chen, Y.; Zhang, B.; Qiu, D., A modeling and analysis method for fractional-order DC-DC converters, IEEE Trans Power Electron, 32, 9, 7034-7044 (2016)
[10] Chen, L.; Li, T.; Wu, R.; Lopes, AM; Machado, JT; Wu, K., Output-feedback-guaranteed cost control of fractional-order uncertain linear delayed systems, Comput Appl Math, 39, 1-18 (2020) · Zbl 1463.93078
[11] Chen, L.; Wu, R.; Yuan, L.; Yin, L.; Chen, Y.; Xu, S., Guaranteed cost control of fractional-order linear uncertain systems with time-varying delay, Optim Control Appl Methods, 42, 4, 1102-1118 (2021) · Zbl 1472.93102
[12] Chen, L.; Li, X.; Wu, R.; Lopes, AM; Li, X.; Zhu, M., Guaranteed cost consensus for a class of fractional-order uncertain multi-agent systems with state time delay, Int J Control Autom Syst, 20, 11, 3487-3500 (2022)
[13] Ding, Z.; Zeng, Z.; Zhang, H.; Wang, L.; Wang, L., New results on passivity of fractional-order uncertain neural networks, Neurocomputing, 351, 51-59 (2019)
[14] Duarte-Mermoud, MA; Aguila-Camacho, N.; Gallegos, JA; Castro-Linares, R., Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Commun Nonlinear Sci Numer Simul, 22, 1-3, 650-659 (2015) · Zbl 1333.34007
[15] Fukunaga, M.; Shimizu, N., Role of prehistories in the initial value problems of fractional viscoelastic equations, Nonlinear Dyn, 38, 207-220 (2004) · Zbl 1142.74310
[16] Gokulakrishnan, V.; Srinivasan, R.; Syed Ali, M.; Rajchakit, G., Finite-time guaranteed cost control for stochastic nonlinear switched systems with time-varying delays and reaction-diffusion, Int J Comput Math, 100, 5, 1031-1051 (2023) · Zbl 1524.93054
[17] Gong, Y.; Wen, G.; Peng, Z.; Huang, T.; Chen, Y., Observer-based time-varying formation control of fractional-order multi-agent systems with general linear dynamics, IEEE Trans Circ Syst II: Express Briefs, 67, 1, 82-86 (2019)
[18] Gu K (2000) An integral inequality in the stability problem of time-delay systems. Proc. IEEE Conf. Dec. Contr, Sydney, Australia
[19] Hong, DT; Sau, NH; Thuan, MV, New criteria for dissipativity analysis of fractional-order static neural networks, Circ Syst Signal Process, 41, 4, 2221-2243 (2022) · Zbl 1509.93046
[20] Jin, XC; Lu, JG, Delay-dependent criteria for robust stability and stabilization of fractional-order time-varying delay systems, Eur J Control, 67 (2022) · Zbl 1497.93175
[21] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and applications of fractional differential equations (2006), Amsterdam: Elsevier Science, Amsterdam · Zbl 1092.45003
[22] Leyden, K.; Goodwine, B., Fractional-order system identification for health monitoring, Nonlinear Dyn, 92, 3, 1317-1334 (2018)
[23] Li, C.; Liao, X.; Yu, J., Synchronization of fractional order chaotic systems, Phys Rev E, 68, 6 (2003)
[24] Li, Y.; Chen, Y.; Podlubny, I., Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput Math Appl, 59, 5, 1810-1821 (2010) · Zbl 1189.34015
[25] Li, Z.; Liu, L.; Dehghan, S.; Chen, Y.; Xue, D., A review and evaluation of numerical tools for fractional calculus and fractional order controls, Int J Control, 90, 6, 1165-1181 (2017) · Zbl 1367.93205
[26] Liu, L.; Cao, X.; Fu, Z.; Song, S.; Xing, H., Guaranteed cost finite-time control of fractional-order nonlinear positive switched systems with D-perturbations via MDADT, J Syst Sci Complex, 32, 857-874 (2019) · Zbl 1414.93147
[27] Liu, Y.; Arumugam, A.; Rathinasamy, S.; Alsaadi, FE, Event-triggered non-fragile finite-time guaranteed cost control for uncertain switched nonlinear networked systems, Nonlinear Anal Hybrid Syst, 36 (2020) · Zbl 1441.93178
[28] Liu, L.; Di, Y.; Shang, Y.; Fu, Z.; Fan, B., Guaranteed cost and finite-time non-fragile control of fractional-order positive switched systems with asynchronous switching and impulsive moments, Circ Syst Signal Process, 40, 3143-3160 (2021) · Zbl 1508.93163
[29] Meng, X.; Jiang, B.; Karimi, HR; Gao, C., An event-triggered mechanism to observer-based sliding mode control of fractional-order uncertain switched systems, ISA Trans, 135, 115-129 (2023)
[30] Mohadeszadeh, M.; Pariz, N.; Ramezani-Al, MR, Stabilization of fractional switched linear systems via reset control technique, ISA Trans, 130, 216-225 (2022) · Zbl 1485.93493
[31] Padmaja, N.; Balasubramaniam, P., Results on passivity analysis of delayed fractional-order neural networks subject to periodic impulses via refined integral inequalities, Comput Appl Math, 41, 4, 136 (2022) · Zbl 1499.93069
[32] Pahnehkolaei, SMA; Alfi, A.; Machado, JT, Fuzzy logic embedding of fractional order sliding mode and state feedback controllers for synchronization of uncertain fractional chaotic systems, Comput Appl Math, 39, 3, 182 (2020) · Zbl 1449.93164
[33] Phat, VN; Thuan, MV; Tuan, TN, New criteria for guaranteed cost control of nonlinear fractional-order delay systems: a Razumikhin approach, Vietnam J Math, 47, 403-415 (2019) · Zbl 1422.93163
[34] Phuong, NT; Thanh Huyen, NT; Huyen Thu, NT; Sau, NH; Thuan, MV, New criteria for dissipativity analysis of Caputo fractional-order neural networks with non-differentiable time-varying delays, Int J Nonlinear Sci Numer Simul (2022) · Zbl 07773922 · doi:10.1515/ijnsns-2021-0203
[35] Sabatier, J.; Moze, M.; Farges, C., LMI stability conditions for fractional order systems, Comput Math Appl, 59, 5, 1594-1609 (2010) · Zbl 1189.34020
[36] Sakthivel, R.; Mohanapriya, S.; Ahn, CK; Karimi, HR, Output tracking control for fractional-order positive switched systems with input time delay, IEEE Trans Circ Syst II: Express Briefs, 66, 6, 1013-1017 (2018)
[37] Sau, NH; Thuan, MV; Huyen, NTT, Passivity analysis of fractional-order neural networks with time-varying delay based on LMI approach, Circ Syst Signal Process, 39, 5906-5925 (2020) · Zbl 1517.93047
[38] Shang, Y.; Liu, L.; Di, Y.; Fu, Z.; Fan, B., Guaranteed cost and finite-time event-triggered control of fractional-order switched systems, Trans Inst Measur Control, 43, 12, 2724-2733 (2021)
[39] Sui, S.; Chen, CP; Tong, S., Neural-network-based adaptive DSC design for switched fractional-order nonlinear systems, IEEE Trans Neural Netw Learn Syst, 32, 10, 4703-4712 (2020)
[40] Sweetha, S.; Sakthivel, R.; Almakhles, DJ; Priyanka, S., Non-fragile fault-tolerant control design for fractional-order nonlinear systems with distributed delays and fractional parametric uncertainties, IEEE Access, 10, 19997-20007 (2022)
[41] Tang, L.; He, K.; Liu, YJ, Adaptive output feedback fuzzy event-triggered control for fractional-order nonlinear switched Systems, IEEE Trans Fuzzy Syst (2023) · doi:10.1109/TFUZZ.2023.3258074
[42] Thuan, MV; Huong, DC, Robust guaranteed cost control for time-delay fractional-order neural networks systems, Optim Control Appl Methods, 40, 4, 613-625 (2019) · Zbl 1425.93085
[43] Thuan, MV; Sau, NH; Huyen, NTT, Finite-time \(H_{\infty }\) control of uncertain fractional-order neural networks, Comput Appl Math, 39, 2, 59 (2020) · Zbl 1463.93221
[44] Uhlig, F., A recurring theorem about pairs of quadratic forms and extensions: a survey, Linear Algebra Appl, 25, 219-237 (1979) · Zbl 0408.15022
[45] Wang, Z.; Huang, X.; Shen, H., Control of an uncertain fractional order economic system via adaptive sliding mode, Neurocomputing, 83, 83-88 (2012)
[46] Yan, J.; Hu, B.; Guan, ZH; Li, T.; Zhang, DX, On controllability and observability of a class of fractional-order switched systems with impulse, Nonlinear Anal Hybrid Syst, 50 (2023) · Zbl 1537.93099
[47] Yang, X.; Song, Q.; Liu, Y.; Zhao, Z., Finite-time stability analysis of fractional-order neural networks with delay, Neurocomputing, 152, 19-26 (2015)
[48] Yang, Q.; Chen, D.; Zhao, T.; Chen, Y., Fractional calculus in image processing: a review, Fract Calc Appl Anal, 19, 5, 1222-1249 (2016) · Zbl 1499.94016
[49] Yang, R.; Liu, S.; Li, X.; Huang, T., Stability analysis of delayed fractional-order switched systems, Trans Inst Measur Control, 45, 3, 502-511 (2023)
[50] Yu, L.; Chu, J., An LMI approach to guaranteed cost control of linear uncertain time-delay systems, Automatica, 35, 6, 1155-1159 (1999) · Zbl 1041.93530
[51] Zhang, X.; Wang, Z., Stability and robust stabilization of uncertain switched fractional order systems, ISA Trans, 103, 1-9 (2020)
[52] Zhang, S.; Tang, M.; Li, X.; Liu, X., Stability and stabilization of fractional-order non-autonomous systems with unbounded delay, Commun Nonlinear Sci Numer Simul, 117 (2023) · Zbl 1505.93198
[53] Zou, C.; Zhang, L.; Hu, X.; Wang, Z.; Wik, T.; Pecht, M., A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors, J Power Sour, 390, 286-296 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.