×

Linear-shear-current modified nonlinear Schrödinger equation for gravity-capillary waves on deep water. (English) Zbl 1543.76016

Summary: Starting from Zakharov’s integral equation (ZIE) a modified nonlinear Schrödinger equation (NLSE) correct to fourth-order in wave steepness for deep water gravity-capillary waves (GCW) on linear shear currents (LSC) is derived under the assumption of narrow bandwidth. This equation is then used to examine the stability of uniform wave train. It is found that LSC change considerably the instability behaviors of weakly nonlinear GCW. At both third and fourth-orders, we have shown the significance of nonlinear coupling between the wave-induced mean flow and the vorticity. The key result is that the new fourth-order analysis shows notable deviations in the modulational instability properties from the third-order analysis and provides better results consistent with the exact results. The united effect of vorticity and surface tension is to increase the modulational growth rate of instability influenced by surface tension when the vorticity is negative. As it turns out, the most significant contribution appears from the mean flow response and in the absence of vorticity and depth uniform current the effect of mean flow for pure capillary waves is of opposite sign to that of pure gravity waves. As a consequence, it modifies significantly the modulational instability properties.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76B45 Capillarity (surface tension) for incompressible inviscid fluids
76E99 Hydrodynamic stability
35Q55 NLS equations (nonlinear Schrödinger equations)
Full Text: DOI

References:

[1] Peregrine, DH, Interaction of water waves and currents, Adv Appl Mech, 16, 9-117, 1976 · Zbl 0471.76018 · doi:10.1016/S0065-2156(08)70087-5
[2] Jonsson, IG, Wave-current interactions in the sea, Sea, 9, 65-120, 1990
[3] Longuet-Higgins, MS; Stewart, RW, The changes in amplitude of short gravity waves on steady non-uniform currents, J Fluid Mech, 10, 4, 529-549, 1961 · Zbl 0096.42003 · doi:10.1017/S0022112061000342
[4] Bretherton, FP; Garrett, CJR; Lighthill, MJ, Wavetrains in inhomogeneous moving media, Proc R Soc London Ser A Math Phys Sci, 302, 1471, 529-554, 1968 · Zbl 0187.03302 · doi:10.1098/rspa.1968.0034
[5] Kantardgi, I., Effect of depth current profile on wave parameters, Coast Eng, 26, 3, 195-206, 1995 · doi:10.1016/0378-3839(95)00021-6
[6] Liu, PL; Dingemans, MW; Kostense, JK, Long-wave generation due to the refraction of short-wave groups over a shear current, J Phys Oceanogr, 20, 1, 53-59, 1990 · doi:10.1175/1520-0485(1990)020<0053:LWGDTT>2.0.CO;2
[7] Huang, Z.; Mei, CC, Effects of surface waves on a turbulent current over a smooth or rough seabed, J Fluid Mech, 497, 253-287, 2003 · Zbl 1067.76046 · doi:10.1017/S0022112003006657
[8] Mei, CC; Lo, E., The effects of a jet-like current on gravity waves in shallow water, J Phys Oceanogr, 14, 2, 471-477, 1984 · doi:10.1175/1520-0485(1984)014<0471:TEOAJL>2.0.CO;2
[9] MacIver, RD; Simons, RR; Thomas, GP, Gravity waves interacting with a narrow jet-like current, J Geophys Res Oceans, 2006 · doi:10.1029/2005JC003030
[10] Tsao, S., Behavior of surface waves on a linearly varying current, Tr Mosk Fiz Tekh Inst Issled Mekh Prikl Math, 3, 66-84, 1959
[11] Skyner DJ, Easson WJ (1992) The effect of sheared currents on wave kinematics and surface parameters. Coast Eng. doi:10.1061/9780872629332.046
[12] Swan, C., An experimental study of waves on a strongly sheared current profile, Coast Eng, 1990 · doi:10.1061/9780872627765.040
[13] Swan, C.; Cummins, I.; James, R., An experimental study of two-dimensional surface water waves propagating on depth-varying currents. Part 1. Regular waves, J Fluid Mech, 428, 273-304, 2001 · Zbl 0968.76502 · doi:10.1017/S0022112000002457
[14] Gerber, M., The Benjamin-Feir instability of a deep-water stokes wavepacket in the presence of a non-uniform medium, J Fluid Mech, 176, 311-332, 1987 · Zbl 0632.76059 · doi:10.1017/S0022112087000697
[15] Dysthe, KB, Note on a modification to the nonlinear schrödinger equation for application to deep water waves, Proc R Soc London A Math Phys Sci, 369, 1736, 105-114, 1979 · Zbl 0429.76014 · doi:10.1098/rspa.1979.0154
[16] Brinch-Nielsen U (1985) Slowly modulated, weakly nonlinear gravity waves-fourth order evolution equations and stability analysis. In: M.Sc. thesis, Inst. Hydrodyn. and Hydraul. Engng. (ISVA), Tech. Univ. Denmark
[17] Stocker, J.; Peregrine, D., The current-modified nonlinear schrödinger equation, J Fluid Mech, 399, 335-353, 1999 · Zbl 1059.76505 · doi:10.1017/S0022112099006618
[18] Debsarma, S.; Das, K., Current-modified evolution equation for a broader bandwidth capillary-gravity wave packet, ANZIAM J, 58, 2, 143-161, 2016 · Zbl 1426.76065 · doi:10.1017/S1446181116000225
[19] Brantenberg, C.; Brevik, I., Higher order water waves in currents of uniform vorticity, in the presence of surface tension, Phys Scr, 47, 3, 383, 1993 · doi:10.1088/0031-8949/47/3/008
[20] Hsu, H-C; Francius, M.; Montalvo, P.; Kharif, C., Gravity-capillary waves in finite depth on flows of constant vorticity, Proc R Soc A Math Phys Eng Sci, 472, 2195, 20160363, 2016 · Zbl 1371.76043 · doi:10.1098/rspa.2016.0363
[21] Hur, VM, Shallow water models with constant vorticity, Eur J Mech B Fluids, 73, 170-179, 2019 · Zbl 1408.76068 · doi:10.1016/j.euromechflu.2017.06.001
[22] Thomas, R.; Kharif, C.; Manna, M., A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity, Phys Fluids, 24, 12, 2012 · doi:10.1063/1.4768530
[23] Hsu, HC; Kharif, C.; Abid, M.; Chen, YY, A nonlinear schrödinger equation for gravity-capillary water waves on arbitrary depth with constant vorticity. Part 1, J Fluid Mech, 854, 146-163, 2018 · Zbl 1415.76069 · doi:10.1017/jfm.2018.627
[24] Dhar, AK; Kirby, JT, Fourth-order stability analysis for capillary-gravity waves on finite-depth currents with constant vorticity, Phys Fluids, 35, 2, 2023 · doi:10.1063/5.0136002
[25] Manna, S.; Dhar, A., Stability analysis from higher order nonlinear schrödinger equation for interfacial capillary-gravity waves, Meccanica, 58, 4, 687-698, 2023 · Zbl 1522.76032 · doi:10.1007/s11012-023-01638-5
[26] Halder, S.; Dhar, AK, A modification to the schrödinger equation for broader bandwidth gravity-capillary waves on deep water with depth-uniform current, ANZIAM J, 64, 3, 292-313, 2022 · Zbl 1512.76018 · doi:10.21914/anziamj.v64.17255
[27] Liao, B.; Dong, G.; Ma, Y.; Gao, JL, Linear-shear-current modified schrödinger equation for gravity waves in finite water depth, Phys Rev E, 96, 2017 · doi:10.1103/PhysRevE.96.043111
[28] Brinch-Nielsen, U.; Jonsson, IG, Fourth order evolution equations and stability analysis for stokes waves on arbitrary water depth, Wave Motion, 8, 5, 455-472, 1986 · Zbl 0625.76020 · doi:10.1016/0165-2125(86)90030-2
[29] Longuet-Higgins, MS, The instabilities of gravity waves of finite amplitude in deep water i. Superharmonics, Proc R Soc London A Math Phys Sci, 360, 1703, 471-488, 1978 · Zbl 0497.76024 · doi:10.1098/rspa.1978.0080
[30] Longuet-Higgins MS (1978) The instabilities of gravity waves of finite amplitude in deep water ii. subharmonics. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 360(1703): 489-505. Accessed 22 July 2023 · Zbl 0497.76025
[31] Benjamin, TB; Feir, JE, The disintegration of wave trains on deep water part 1. Theory, J Fluid Mech, 27, 3, 417-430, 1967 · Zbl 0144.47101 · doi:10.1017/S002211206700045X
[32] Stiassnie, M., Note on the modified nonlinear schrödinger equation for deep water waves, Wave Motion, 6, 4, 431-433, 1984 · Zbl 0565.76020 · doi:10.1016/0165-2125(84)90043-X
[33] Kharif, C.; Abid, M., Miles theory revisited with constant vorticity in water of infinite depth, J Mar Sci Eng, 2020 · doi:10.3390/jmse8080623
[34] Zakharov, VE, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J Appl Mech Tech Phys, 9, 190-194, 1968 · doi:10.1007/BF00913182
[35] Crawford, DR; Lake, BM; Saffman, PG; Yuen, HC, Stability of weakly nonlinear deep-water waves in two and three dimensions, J Fluid Mech, 105, 177-191, 1981 · Zbl 0459.76011 · doi:10.1017/S0022112081003169
[36] Hogan, SJ; Gruman, I.; Stiassnie, M., On the changes in phase speed of one train of water waves in the presence of another, J Fluid Mech, 192, 97-114, 1988 · Zbl 0647.76008 · doi:10.1017/S0022112088001806
[37] Krasitskii, VP, On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves, J Fluid Mech, 272, 1-20, 1994 · Zbl 0815.76016 · doi:10.1017/S0022112094004350
[38] Hogan, SJ, The fourth-order evolution equation for deep-water gravity-capillary waves, Proc R Soc London A Math Phys Sci, 402, 359-372, 1985 · Zbl 0593.76029 · doi:10.1098/rspa.1985.0122
[39] Curtis, CW; Carter, JD; Kalisch, H., Particle paths in nonlinear schrödinger models in the presence of linear shear currents, J Fluid Mech, 855, 322-350, 2018 · Zbl 1415.76063 · doi:10.1017/jfm.2018.623
[40] McGoldrick, LF, On wilton’s ripples: a special case of resonant interactions, J Fluid Mech, 42, 1, 193-200, 1970 · Zbl 0208.56403 · doi:10.1017/S0022112070001179
[41] Wilton, JR, LXXII on ripples, London Edinburgh Dublin Philos Mag J Sci, 29, 173, 688-700, 1915 · JFM 45.1090.02 · doi:10.1080/14786440508635350
[42] Harrison, WJ, The influence of viscosity and capillarity on waves of finite amplitude, Proc Lond Math Soc, 2, 1, 107-121, 1909 · JFM 40.0810.01 · doi:10.1112/plms/s2-7.1.107
[43] Crapper, GD, An exact solution for progressive capillary waves of arbitrary amplitude, J Fluid Mech, 2, 6, 532-540, 1957 · Zbl 0079.19304 · doi:10.1017/S0022112057000348
[44] Peregrine, DH, Water waves, nonlinear schrödinger equations and their solutions, ANZIAM J, 25, 1, 16-43, 1983 · Zbl 0526.76018 · doi:10.1017/S0334270000003891
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.