×

General form of the full electromagnetic Green function in materials physics. (English) Zbl 1539.78001

Summary: In this article, we present the general form of the full electromagnetic Green function which is suitable for the application in bulk materials physics. In particular, we show how the seven adjustable parameter functions of the free Green function translate into seven corresponding parameter functions of the full Green function. Furthermore, for both the fundamental response tensor and the electromagnetic Green function, we discuss the reduction of the Dyson equation on the four-dimensional Minkowski space to an equivalent, three-dimensional Cartesian Dyson equation.

MSC:

78A25 Electromagnetic theory (general)
74F15 Electromagnetic effects in solid mechanics

References:

[1] Weinberg, S., The quantum theory of fields, Foundations, 1, (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0959.81002
[2] Itzykson, C.; Zuber, J. B., Quantum Field Theory, (1980), McGraw-Hill, Inc.: McGraw-Hill, Inc. New York · Zbl 0453.05035
[3] Peskin, M. E.; Schröder, D. V., An Introduction to Quantum Field Theory, (1995), Addison-Wesley Publishing Company: Addison-Wesley Publishing Company Reading, MA
[4] Huang, K., Quantum Field Theory: From Operators to Path Integrals, (2010), WILEY-VCH Verlag GmbH & Co. KGaA: WILEY-VCH Verlag GmbH & Co. KGaA Weinheim · Zbl 1193.81002
[5] Ryder, L. H., Quantum Field Theory, (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0893.00008
[6] Hedin, L., New method for calculating the one-particle Green’s function with application to the electron-gas problem, Phys. Rev., 139, A796, (1965)
[7] Hedin, L.; Lundqvist, S., Effects of electron-electron and electron-phonon interactions on the one-electron states of solids, Solid State Physics: Advances in Research and Applications, 23, 1-181, (1969), Academic Press, Inc.: Academic Press, Inc. New York
[8] Aryasetiawan, F.; Gunnarsson, O., The GW method, Rep. Prog. Phys., 61, 237, (1998)
[9] Friedrich, C.; Schindlmayr, A., Many-body perturbation theory: the GW approximation, (Grotendorst, J.; Blügel, S.; Marx, D., Computational Nanoscience: Do it Yourself!. Computational Nanoscience: Do it Yourself!, NIC Series, 31, (2006), John von Neumann Institute for Computing: John von Neumann Institute for Computing Jülich), 335-355
[10] Melrose, D. B., Quantum plasmadynamics: unmagnetized plasmas, Lecture Notes in Physics, 735, (2008), Springer: Springer New York · Zbl 1158.82001
[11] See arXiv:1409.3723. · Zbl 1355.78005
[12] See also arXiv:1702.06985. · Zbl 1428.78003
[13] R. Starke, G.A.H. Schober, Ab initio materials physics and microscopic electrodynamics of media, 2016, arXiv:1606.00445[cond-mat.mtrl-sci].
[14] See also arXiv:1510.03404.
[15] See also arXiv:1704.06615.
[16] See also arXiv:1401.6800.
[17] Misner, C. W.; Thorne, K. S.; Wheeler, J. A., Gravitation, (1973), W. H. Freeman and Company: W. H. Freeman and Company San Francisco
[18] Alcubierre, M., Introduction to \(3 + 1\) numerical relativity, International Series of Monographs in Physics, 140, (2008), Oxford University Press: Oxford University Press Oxford · Zbl 1140.83002
[19] Gambini, R.; Pullin, J., A first course in loop quantum gravity, (2011), Oxford University Press: Oxford University Press Oxford · Zbl 1243.83001
[20] R. Starke, G.A.H. Schober, Response theory of the electron-phonon coupling, 2016, arXiv:1606.00012[cond-mat.mtrl-sci].
[21] R. Starke, G.A.H. Schober, R. Wirnata, J. Kortus, Wavevector-dependent optical properties from wavevector-independent conductivity tensor, 2017, arXiv:1708.06330[physics.optics]. · Zbl 1516.78002
[22] See also arXiv:1709.08811.
[23] Schwalbe, S.; Wirnata, R.; Starke, R.; Schober, G. A.H.; Kortus, J., Ab initio electronic structure and optical conductivity of bismuth tellurohalides, Phys. Rev. B, 94, 205130, (2016)
[24] Bertlmann, R. A., Anomalies in quantum field theory, (1996), Oxford University Press Inc.: Oxford University Press Inc. New York · Zbl 1223.81003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.