×

A representation theorem for set-valued submartingales. (English) Zbl 07880484

Summary: The integral representation theorem for martingales has been widely used in probability theory. In this work, we propose and prove a general representation theorem for a class of set-valued submartingales. We also extend the stochastic integral representation for non-trivial initial set-valued martingales. Moreover, we show that this result covers the existing ones in the literature for both degenerated and non-degenerated set-valued martingales.

MSC:

60H05 Stochastic integrals
60G44 Martingales with continuous parameter

References:

[1] Hall, P., Christopher, C. H. (2014). Martingale Limit Theory and its Application. New York: Academic Press.
[2] Hiai, F., Umegaki, H. (1977). Integrals, conditional expectations, and martingales of multivalued functions. J. Multivariate Anal. 7(1):149-182. doi:. · Zbl 0368.60006
[3] Molchanov, I. S. (2017). Theory of random sets. In Volume of Probability Theory and Stochastic Modelling, 2nd ed., Vol. 87, London: Springer-Verlag. · Zbl 1406.60006
[4] Li, S., Ogura, Y., Kreinovich, V. (2002). Limit theorems and applications of set-valued and fuzzy set-valued random variables. In Theory and Decision Library B, Vol. 43. Springer. · Zbl 1348.60003
[5] Arutyunov, A. V., Obukhovskii, V. (2016). Convex and Set-Valued Analysis. Berlin, Germany: De Gruyter.
[6] Aubin, J.-P., Frankowska, H. (2000). Introduction: Set-valued analysis in control theory. Set-Valued Anal. 8:1-9. · Zbl 0962.49001
[7] Kisielewicz, M., (2020). Set-Valued Stochastic Integrals and Applications. Cham, Switzerland: Springer. · Zbl 1440.60002
[8] Peng, Z.-Y., Chen, X.-J., Zhao, Y.-B., Li, X.-B. (2022). Painlevé-kuratowski convergence of minimal solutions for set-valued optimization problems via improvement sets. J. Glob. Optim. 87: 759-781. · Zbl 1526.49013
[9] Peng, Z.-Y., Wang, J.-J., Fai, Ka., Yiu, C., Zhao, Y.-B. (2022). Technical note on the existence of solutions for generalized symmetric set-valued quasi-equilibrium problems utilizing improvement set. Optimization. 72(7):1707-1028. · Zbl 1518.49021
[10] Aumann, R. J. (1965). Integrals of set-valued functions. J. Math. Anal. Appl. 12(1):1-12. doi:. · Zbl 0163.06301
[11] Hukuhara, M. (1967). Integration des applications mesurables dont la valeur est un compact convexe. Funkcialaj Ekvacioj. 10(3):205-223. · Zbl 0161.24701
[12] Debreu, G., (1967). Integration of correspondences. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 2. Berkeley, CA: University of California Press, p. 351-372. · Zbl 0211.52803
[13] Wu, C., Gong, Z. (2000). On Henstock integrals of interval-valued functions and fuzzy-valued functions. Fuzzy Sets Syst. 115(3):377-391. doi:. · Zbl 0973.26009
[14] Wu, W.-Z., Zhang, W.-X., Wang, R.-M. (2001). Set valued Bartle integrals. J. Math. Anal. Appl. 255(1):1-20. doi:. · Zbl 0985.28012
[15] Kisielewicz, M. (1997). Set-valued stochastic intergrals and stochastic inclutions 1. Stoch. Anal. Appl. 15(5):783-800. doi:. · Zbl 0891.93070
[16] Kisielewicz, M. (2012). Some properties of set-valued stochastic integrals. J. Math. Anal. Appl. 388(2):984-995. doi:. · Zbl 1235.60058
[17] Kisielewicz, M. (2014). Martingale representation theorem for set-valued martingales. J. Math. Anal. Appl. 409(1):111-118. doi:. · Zbl 1306.60044
[18] Kim, Y. K., Ghil, B. M. (1997). Integrals of fuzzy-number-valued functions. Fuzzy Sets Syst. 86(2):213-222. doi:. · Zbl 0922.28015
[19] Kim, B. K., Kim, J. H. (1999). Stochastic integrals of set-valued processes and fuzzy processes. J. Math. Anal. Appl. 236(2):480-502. doi:. · Zbl 0954.60043
[20] Jung, E. J., Kim, J. H. (2003). On set-valued stochastic integrals. Stoch. Anal. Appl. 21(2):401-418. doi:. · Zbl 1049.60048
[21] Zhang, J., Li, S., Mitoma, I., Okazaki, Y. (2009). On set-valued stochastic integrals in an M-type 2 Banach space. J. Math. Anal. Appl. 350(1):216-233. doi:. · Zbl 1155.60021
[22] Zhang, J., Mitoma, I., Okazaki, Y. (2021). Submartingale property of set-valued stochastic integration associated with poisson process and related integral equations on banach spaces. J. Nonlinear Convex Anal. 22(4):775-799. · Zbl 1475.60099
[23] Tuyen, L. T., Vuong, P. Q., Quynh, V. X., Dang, N. G. (2022). Weak set-valued martingale difference and its applications. Int. J. Appl. Math. 35(3):397-422.
[24] Zhang, J., Yano, K. (2023). Remarks on martingale representation theorem for set-valued martingales. In International Conference on Soft Methods in Probability and Statistics.Cham, Switzerland: Springer, p. 398-405.
[25] Assani, I., Klei, H. A. (1982). Parties décomposables compactes de l1e. CR Acad. Sci. Paris, Série I, 294:533-536. · Zbl 0489.46028
[26] Stefanini, L., Bede, B. (2019). A New gH-difference for multi-dimensional convex sets and convex fuzzy sets. Axioms. 8(2):48-68. doi:. · Zbl 1432.68464
[27] Ararat, C., Ma, J., Wu, W. (2023). Set-valued backward stochastic differential equations. Ann. Appl. Probab. 33(5):3418-3448. · Zbl 1538.60091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.