×

A second order directional split exponential integrator for systems of advection-diffusion-reaction equations. (English) Zbl 07797627

Summary: We propose a second order exponential scheme suitable for two-component coupled systems of stiff evolutionary advection-diffusion-reaction equations in two and three space dimensions. It is based on a directional splitting of the involved matrix functions, which allows for a simple yet efficient implementation through the computation of small sized exponential-like functions and tensor-matrix products. The procedure straightforwardly extends to the case of an arbitrary number of components and to any space dimension. Several numerical examples in 2D and 3D with physically relevant (advective) Schnakenberg, FitzHugh-Nagumo, DIB, and advective Brusselator models clearly show the advantage of the approach against state-of-the-art techniques.

MSC:

65Lxx Numerical methods for ordinary differential equations
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65Fxx Numerical linear algebra

Software:

KIOPS; TR-BDF2; RODAS; Expint

References:

[1] Al-Mohy, A. H.; Higham, N. J., A new scaling and squaring algorithm for the matrix exponential. SIAM J. Matrix Anal. Appl., 970-989 (2010) · Zbl 1194.15021
[2] Alla, A.; Monti, A.; Sgura, I., Adaptive POD-DEIM correction for Turing pattern approximation in reaction-diffusion PDE systems. J. Numer. Math., 205-229 (2023) · Zbl 07745017
[3] Alonso, J. M.; Ibáñez, J.; Defez, E.; Alonso-Jordá, P., Euler polynomials for the matrix exponential approximation. J. Comput. Appl. Math. (2023) · Zbl 1522.65069
[4] Asante-Asamani, E. O.; Kleefeld, A.; Wade, B. A., A second-order exponential time differencing scheme for non-linear reaction-diffusion systems with dimensional splitting. J. Comput. Phys. (2020) · Zbl 1440.65081
[5] Ben Tahar, S.; Muñoz, J. J.; Shefelbine, S. J.; Comellas, E., Turing pattern prediction in three-dimensional domains: the role of initial conditions and growth. bioRxiv (2023), 2023.03.29.534782
[6] Berland, H.; Skaflestad, B.; Wright, W. M., EXPINT — a MATLAB package for exponential integrators (2005), Norwegian University of Science and Technology, Technical Report 4
[7] Bhatt, H. P.; Khaliq, A. Q.M.; Wade, B. A., Efficient Krylov-based exponential time differencing method in application to 3D advection-diffusion-reaction systems. Appl. Math. Comput., 260-273 (2018) · Zbl 1427.65144
[8] Bogacki, P.; Shampine, L. F., A 3(2) pair of Runge - Kutta formulas. Appl. Math. Lett., 321-325 (1989) · Zbl 0705.65055
[9] Bozzini, B.; Lacitignola, D.; Sgura, I., Spatio-temporal organization in alloy electrodeposition: a morphochemical mathematical model and its experimental validation. J. Solid State Electrochem., 467-479 (2013)
[10] Caliari, M.; Cassini, F., Direction splitting of \(φ\)-functions in exponential integrators for \(d\)-dimensional problems in Kronecker form. J. Approx. Softw. (2023), in press
[11] Caliari, M.; Cassini, F.; Einkemmer, L.; Ostermann, A.; Zivcovich, F., A \(μ\)-mode integrator for solving evolution equations in Kronecker form. J. Comput. Phys. (2022) · Zbl 07518078
[12] Caliari, M.; Cassini, F.; Zivcovich, F., BAMPHI: matrix-free and transpose-free action of linear combinations of \(φ\)-functions from exponential integrators. J. Comput. Appl. Math. (2023) · Zbl 1503.65142
[13] Caliari, M.; Cassini, F.; Zivcovich, F., A \(μ\)-mode approach for exponential integrators: actions of \(φ\)-functions of Kronecker sums (2023)
[14] Caliari, M.; Cassini, F.; Zivcovich, F., A \(μ\)-mode BLAS approach for multidimensional tensor-structured problems. Numer. Algorithms, 2483-2508 (2023) · Zbl 1528.15001
[15] Caliari, M.; Zivcovich, F., On-the-fly backward error estimate for matrix exponential approximation by Taylor algorithm. J. Comput. Appl. Math., 532-548 (2019) · Zbl 1452.65082
[16] Croci, M.; Muñoz-Matute, J., Exploiting Kronecker structure in exponential integrators: fast approximation of the action of \(φ\)-functions of matrices via quadrature. J. Comput. Sci. (2023)
[17] D’Autilia, M. C.; Sgura, I.; Simoncini, V., Matrix-oriented discretization methods for reaction-diffusion PDEs: comparisons and applications. Comput. Math. Appl., 2067-2085 (2020) · Zbl 1454.65047
[18] Gambino, G.; Lombardo, M. C.; Rubino, G.; Sammartino, M., Pattern selection in the 2D FitzHugh-Nagumo model. Ric. Mat., 535-549 (2019) · Zbl 1431.37059
[19] Gaudreault, S.; Rainwater, G.; Tokman, M., KIOPS: a fast adaptive Krylov subspace solver for exponential integrators. J. Comput. Phys., 236-255 (2018) · Zbl 1418.65074
[20] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics (1996), Springer Berlin: Springer Berlin Heidelberg · Zbl 0859.65067
[21] Hochbruck, M.; Leibold, J.; Ostermann, A., On the convergence of Lawson methods for semilinear stiff problems. Numer. Math., 553-580 (2020) · Zbl 1453.65269
[22] Hochbruck, M.; Ostermann, A., Exponential integrators. Acta Numer., 209-286 (2010) · Zbl 1242.65109
[23] Hosea, M. E.; Shampine, L. F., Analysis and implementation of TR-BDF2. Appl. Numer. Math., 21-37 (1996) · Zbl 0859.65076
[24] Jiang, T.; Zhang, Y.-T., Krylov single-step implicit integration factor WENO methods for advection-diffusion-reaction equations. J. Comput. Phys., 22-44 (2016) · Zbl 1349.65306
[25] Lawson, J. D., Generalized Runge-Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal., 372-380 (1967) · Zbl 0223.65030
[26] Li, D.; Yang, S.; Lan, J., Efficient and accurate computation for the \(φ\)-functions arising from exponential integrators. Calcolo, 1-24 (2022)
[27] Luan, V. T.; Pudykiewicz, J. A.; Reynolds, D. R., Further development of efficient and accurate time integration schemes for meteorological models. J. Comput. Phys., 817-837 (2019) · Zbl 1416.86011
[28] Madzvamuse, A.; Wathen, A. J.; Maini, P. K., A moving grid finite element method applied to a model biological pattern generator. J. Comput. Phys., 478-500 (2003) · Zbl 1029.65113
[29] Malchow, H.; Petrovskii, S. V.; Venturino, E., Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation. CRC Mathematical Biology Series (2008), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton · Zbl 1298.92004
[30] Müller, B., Investigation of Exponential Time Differencing schemes for advection-diffusion-reaction problems in the presence of significant advection (2022), University of Louisiana at Lafayette, Master’s thesis
[31] Muñoz-Matute, J.; Pardo, D.; Calo, V. M., Exploiting the Kronecker product structure of \(φ\)-functions in exponential integrators. Int. J. Numer. Methods Eng., 2142-2161 (2022) · Zbl 1536.65074
[32] Neudecker, H., A note on Kronecker matrix products and matrix equation systems. SIAM J. Appl. Math., 603-606 (1969) · Zbl 0185.08204
[33] Perumpanani, A. J.; Sherratt, J. A.; Maini, P. K., Phase differences in reaction-diffusion-advection systems and applications to morphogenesis. IMA J. Appl. Math., 19-33 (1995) · Zbl 0843.35041
[34] Sastre, J.; Ibáñez, J.; Defez, E., Boosting the computation of the matrix exponential. Appl. Math. Comput., 206-220 (2019) · Zbl 1429.65093
[35] Schnakenberg, J., Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol., 389-400 (1979)
[36] Sherratt, J. A.; Chaplain, M. A.J., A new mathematical model for avascular tumour growth. J. Math. Biol., 291-312 (2001) · Zbl 0990.92021
[37] Singh, S.; Mittal, R. C.; Thottoli, S. R.; Tamsir, M., High-fidelity simulations for Turing pattern formation in multi-dimensional Gray-Scott reaction-diffusion system. Appl. Math. Comput. (2023) · Zbl 07702352
[38] Skaflestad, B.; Wright, W. M., The scaling and modified squaring method for matrix functions related to the exponential. Appl. Numer. Math., 783-799 (2009) · Zbl 1160.65034
[39] Twizell, E. H.; Gumel, A. B.; Cao, Q., A second-order scheme for the “Brusselator” reaction-diffusion system. J. Math. Chem., 297-316 (1999) · Zbl 1016.92049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.