×

High-fidelity simulations of Richtmyer-Meshkov flows triggered by a forward-pentagonal bubble with different Atwood numbers. (English) Zbl 07929205

Summary: In fluid dynamics, the Atwood number is a dimensionless parameter that quantifies the density difference between two fluids. It is calculated as \(At = (\rho_1 - \rho_2)/(\rho_1 + \rho_2)\), where \(\rho_1\) and \(\rho_2\) represent the densities of the respective fluids. This research employs high-fidelity numerical simulations to examine the Atwood number impacts on Richtmyer-Meshkov (RM) flows triggered by a shocked forward-pentagonal bubble. Five distinct gases – \(\mathrm{SF}_6\), Kr, Ar, Ne, and He – are considered within the forward-pentagonal bubble, encompassed by \(\mathrm{N}_2\) gas. In these simulations, a third-order discontinuous Galerkin approach is applied to solve a two-dimensional set of compressible Navier-Stokes-Fourier (NSF) equations for two-component gas flows. To discretize space, hierarchical modal basis functions based on orthogonal-scaled Legendre polynomials are employed. This approach simplifies the NSF equations into a set of ordinary differential equations over time, which are solved using an explicit third-order SSP Runge-Kutta algorithm. The numerical results highlight the notable impact of the Atwood number on the evolution of RM flows in the shocked forward-pentagonal bubble, a phenomenon not previously reported in the literature. The Atwood number exerts a significant influence on the flow patterns, leading to intricate wave formations, shock focusing, jet generation, and interface distortion. Moreover, a comprehensive analysis of the these impact elucidates the mechanisms driving vorticity formation during the interaction process. Additionally, the study conducts a thorough quantitative examination of the Atwood number impacts on the flow fields based on integral quantities and interface features.

MSC:

76-XX Fluid mechanics
Full Text: DOI

References:

[1] Richtmyer, R. D., Taylor instability in shock acceleration of compressible fluids, Comm. Pure Appl. Math., 13, 297-319, 1960
[2] Meshkov, E. E., Instability of the interface of two gases accelerated by a shock wave, Fluid Dyn., 4, 101-104, 1969
[3] Aleshin, A. N.; Lazareva, E. V.; Zaytsev, S. G.; Rozanov, V. B.; Gamalii, E. G.; Lebo, I. G., Linear, nonlinear, and transient stages in the development of the Richtmyer-Meshkov instability, Sov. Phys. Dokl., 35, 159, 1990
[4] von Helmholtz, H., über Discontinuirliche Flüssigkeits-Bewegungen, 1868, Akademie der Wissenschaften zu Berlin
[5] Kelvin, L., On the motion of free solids through a liquid, Phil. Mag., 42, 362-377, 1871
[6] Rayleigh, L., Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc. Lond. Math. Soc., 14, 170-177, 1883 · JFM 15.0848.02
[7] Taylor, G., The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 201, 192-196, 1950 · Zbl 0038.12201
[8] Arnett, D., The role of mixing in astrophysics, Annu. Rev. Astron. Astrophys., 127, 213-217, 2000
[9] Remington, B. A.; Drake, R. P.; Ryutov, D. D., Experimental astrophysics with high power lasers and Z-pinches, Rev. Modern Phys., 78, 755, 2006
[10] Khokhlov, A.; Oran, E.; Thomas, G., Numerical simulation of deflagration-to-detonation transition: The role of shock-flame interactions in turbulent flames, Combust. Flame, 117, 323-339, 1999
[11] Yang, J.; Kubota, T.; Zukoski, E. E., Applications of shock-induced mixing to supersonic combustion, AIAA J., 31, 854-862, 1993
[12] Curran, E. T.; Heiser, W. H.; Pratt, D. T., Fluid phenomena in scramjet combustion systems, Annu. Rev. Fluid Mech., 28, 323-360, 1996
[13] Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.; Metzler, N.; Zalesak, S. T.; Schmitt, A. J.; Phillips, L.; Gardner, J. H.; Serlin, V.; Weaver, J. L.; Obenschain, S. P., Basic hydrodynamics of Richtmyer-Meshkov-type growth and oscillations in the inertial confinement fusion-relevant conditions, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci., 368, 1739-1768, 2010
[14] Lindl, J.; Landen, O.; Edwards, J.; Moses, E.; Team, N., Review of the national ignition campaign 2009-2012, Phys. Plasmas, 21, Article 020501 pp., 2014
[15] Brouillette, M., The Richtmyer-Meshkov instability, Annu. Rev. Fluid Mech., 34, 445-468, 2002 · Zbl 1047.76025
[16] Zhou, Y., Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I, Phys. Rep., 720, 1-136, 2017 · Zbl 1377.76016
[17] Zhou, Y., Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II, Phys. Rep., 723, 1-160, 2017 · Zbl 1377.76017
[18] Zhou, Y.; Williams, R. J.; Ramaprabhu, P.; Groom, M.; Thornber, B.; Hillier, A.; Mostert, W.; Rollin, B.; Balachandar, S.; Powell, P. D.; Mahalov, A.; Attal, N., Rayleigh-Taylor and Richtmyer-Meshkov instabilities: A journey through scales, Phys. D, 423, Article 132838 pp., 2021 · Zbl 1491.76030
[19] Haas, J. F.; Sturtevant, B., Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities, J. Fluid Mech., 181, 41-76, 1987
[20] Layes, G.; Jourdan, G.; Houas, L., Distortion of a spherical gaseous interface accelerated by a plane shock wave, Phys. Rev. Lett., 91, Article 174502 pp., 2003
[21] Jacobs, J. W., Shock-induced mixing of a light-gas cylinder, J. Fluid Mech., 234, 629-649, 1992
[22] Jacobs, J. W., The dynamics of shock accelerated light and heavy gas cylinders, Phys. Fluids A, 5, 2239-2247, 1993
[23] Ranjan, D.; Niederhaus, J. H.J.; Oakley, J. G.; Anderson, M. H.; Bonazza, R.; Greenough, J. A., Shock-bubble interactions: Features of divergent shock-refraction geometry observed in experiments and simulations, Phys. Fluids, 20, Article 036101 pp., 2008 · Zbl 1182.76621
[24] Zhai, Z.; Si, T.; Luo, X.; Yang, J., On the evolution of spherical gas interfaces accelerated by a planar shock wave, Phys. Fluids, 23, 8, Article 084104 pp., 2011
[25] Si, T.; Zhai, Z.; Luo, X., Experimental study of Richtmyer-Meshkov instability in a cylindrical converging shock tube, Phys. Fluids, 32, 343-351, 2014
[26] Quirk, J. J.; Karni, S., On the dynamics of a shock-bubble interaction, J. Fluid Mech., 318, 129-163, 1996 · Zbl 0877.76046
[27] Bagabir, A.; Drikakis, D., Mach number effects on shock-bubble interaction, Shock Waves, 11, 3, 209-218, 2001 · Zbl 0996.76038
[28] Giordano, J.; Burtschell, Y., Richtmyer-Meshkov instability induced by shock-bubble interaction: Numerical and analytical studies with experimental validation, Phys. Fluids, 18, 3, Article 036102 pp., 2006
[29] Niederhaus, J. H.J.; Greenough, J. A.; Oakley, J. G.; Ranjan, D.; Anderson, M. H.; Bonazza, R. A., A computational parameter study for the three-dimensional shock-bubble interaction, J. Fluid Mech., 594, 85-124, 2008 · Zbl 1159.76344
[30] Shankar, S. K.; Kawai, S.; Lele, S. K., Two-dimensional viscous flow simulation of a shock accelerated heavy gas cylinder, Phys. Fluids, 23, Article 024102 pp., 2011
[31] Rybakin, B.; Goryachev, V., The supersonic shock wave interaction with low-density gas bubble, Acta Astronaut., 94, 749-753, 2014
[32] Wang, Z.; Yu, B.; Chen, H.; Zhang, B.; Liu, H., Scaling vortex breakdown mechanism based on viscous effect in shock cylindrical bubble interaction, Phys. Fluids, 30, Article 126103 pp., 2018
[33] Singh, S.; Battiato, M., Behavior of a shock-accelerated heavy cylindrical bubble under nonequilibrium conditions of diatomic and polyatomic gases, Phys. Rev. Fluids, 6, Article 044001 pp., 2021
[34] Singh, S.; Battiato, M.; Myong, R. S., Impact of the bulk viscosity on flow morphology of shock-bubble interaction in diatomic and polyatomic gases, Phys. Fluids, 33, Article 066103 pp., 2021
[35] Singh, S.; Sengupta, B.; Awasthi, M. K.; Vinesh, V., Insight on the flow physics of shock-driven elliptical gas inhomogeneity with different Atwood numbers, Int. J. Math. Eng. Manag. Sci., 33, 1-22, 2024
[36] Zhai, Z.; Wang, M.; Si, T.; Luo, X., On the interaction of a planar shock with a light polygonal interface, J. Fluid Mech., 800-816, 2014
[37] Luo, X.; Wang, M.; Si, T.; Zhai, Z., On the interaction of a planar shock with an \(\text{SF}_6\) polygon, J. Fluid Mech., 366-394, 2015
[38] Igra, D.; Igra, O., Numerical investigation of the interaction between a planar shock wave with square and triangular bubbles containing different gases, Phys. Fluids, 30, Article 056104 pp., 2018
[39] Sinibaldi, G.; Occhicone, A.; Alves, P. F.; Caprini, D.; Marino, L.; Michelotti, F.; Casciola, C. M., Laser induced cavitation: Plasma generation and breakdown shockwave, Phys. Fluids, 31, Article 103302 pp., 2019
[40] Reuter, F.; Mettin, R., Mechanisms of single bubble cleaning, Ultrason. Sonochem., 29, 550-562, 2016
[41] Qiu, N.; Zhou, W.; Che, B.; Wu, D.; Wang, L.; Zhu, H., Effects of microvortex generators on cavitation erosion by changing periodic shedding into new structures, Phys. Fluids, 32, Article 104108 pp., 2020
[42] Bates, K. R.; Nikiforakis, N.; Holder, D., Richtmyer-Meshkov instability induced by the interaction of a shock wave with a rectangular block of \(\text{SF}_6\), Phys. Fluids, 19, Article 036101 pp., 2007 · Zbl 1146.76322
[43] Igra, D.; Igra, O., Shock wave interaction with a polygonal bubble containing two different gases, a numerical investigation, J. Fluid Mech., 889, A26, 2020 · Zbl 1460.76666
[44] Singh, S., Role of Atwood number on flow morphology of a planar shock-accelerated square bubble: A numerical study, Phys. Fluids, 32, Article 126112 pp., 2020
[45] Singh, S., Contribution of Mach number to the evolution of the Richtmyer-Meshkov instability induced by a shock-accelerated square light bubble, Phys. Rev. Fluids, 6, Article 104001 pp., 2021
[46] Singh, S.; Battiato, M., Numerical investigation of shock Mach number effects on Richtmyer-Meshkov instability in a heavy square bubble, Physica D, 453, Article 133844 pp., 2023
[47] Singh, S., Numerical investigation of thermal non-equilibrium effects of diatomic and polyatomic gases on the shock-accelerated square light bubble using a mixed-type modal discontinuous Galerkin method, Int. J. Heat Mass Transfer, 179, Article 121708 pp., 2021
[48] Singh, S.; Battiato, M., Numerical simulations of Richtmyer-Meshkov instability of \(\text{SF}_6\) square bubble in diatomic and polyatomic gases, Comput. & Fluids, 242, Article 105502 pp., 2022 · Zbl 1521.76797
[49] Singh, S.; Torrilhon, M., On the shock-driven hydrodynamic instability in square and rectangular light gas bubbles: A comparative study from numerical simulations, Phys. Fluids, 35, Article 012117 pp., 2023
[50] Singh, S., Investigation of aspect ratio effects on flow characteristics and vorticity generation in shock-induced rectangular bubble, Eur. J. Mech. B Fluids, 101, 131-148, 2023 · Zbl 1522.76100
[51] Singh, S.; Jalleli, D. T., Investigation of coupling effect on the evolution of Richtmyer-Meshkov instability at double heavy square bubbles, Sci. China Phys. Mech. Astron., 67, Article 214711 pp., 2024
[52] Singh, S.; Msmali, A. H., Analyzing Richtmyer-Meshkov phenomena triggered by forward-triangular light gas bubbles: A numerical perspective, Axioms, 13, 365, 2024
[53] Alsaeed, S. S.; Singh, S., Modal discontinuous Galerkin simulations of Richtmyer-Meshkov instability at backward-triangular bubbles: Insights and analysis, Mathematics, 12, 2005, 2024
[54] Harten, A., High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 135, 260-278, 1997 · Zbl 0890.65096
[55] Karniadakis, G.; Sherwin, S., Spectral/Hp Element Methods for Computational Fluid Dynamics, 2005, Oxford University Press · Zbl 1116.76002
[56] Bagabir, A.; Drikakis, D., Numerical experiments using high-resolution schemes for unsteady, inviscid, compressible flows, Comput. Methods Appl. Mech. Engrg., 193, 4675-4705, 2004 · Zbl 1112.76399
[57] Mosedale, A.; Drikakis, D., Assessment of very high order of accuracy in implicit LES models, J. Fluids Eng., 129, 1497-1503, 2007
[58] Latini, M.; Schilling, O.; Don, W. S., Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability, J. Comput. Phys., 221, 805-836, 2007 · Zbl 1107.65338
[59] Raj, L. P.; Singh, S.; Karchani, A.; Myong, R. S., A super-parallel mixed explicit discontinuous Galerkin method for the second-order Boltzmann-based constitutive models of rarefied and microscale gases, Comput. Fluids, 157, 146-163, 2017 · Zbl 1390.76350
[60] Singh, S.; Karchani, A.; Myong, R. S., Non-equilibrium effects of diatomic and polyatomic gases on the shock-vortex interaction based on the second-order constitutive model of the Boltzmann-Curtiss equation, Phys. Fluids, 30, Article 016109 pp., 2018
[61] Singh, S.; Battiato, M., An explicit modal discontinuous Galerkin method for Boltzmann transport equation under electronic nonequilibrium conditions, Comput. Fluids, 224, Article 104972 pp., 2021 · Zbl 1521.76365
[62] Chourushi, T.; Singh, S.; Sreekala, V. A.; Myong, R. S., Computational study of hypersonic rarefied gas flow over re-entry vehicles using the second-order Boltzmann-Curtiss constitutive model, Int. J. Comput. Fluid Dyn., 35, 566-593, 2021 · Zbl 1487.76052
[63] Singh, S.; Karchani, A.; Chourushi, T.; Myong, R. S., A three-dimensional modal discontinuous Galerkin method for the second-order Boltzmann-Curtiss-based constitutive model of rarefied and microscale gas flows, J. Comput. Phys., 457, Article 111052 pp., 2022 · Zbl 1515.76103
[64] Singh, S.; Mittal, R. C.; Thottoli, S. R.; Tamsir, M., High-fidelity simulations for turing pattern formation in multi-dimensional gray-scott reaction-diffusion system, Appl. Math. Comput., 452, Article 128079 pp., 2023 · Zbl 07702352
[65] Wilke, C. R., A viscosity equation for gas mixtures, J. Chem. Phys., 18, 517-519, 1950
[66] Chapman, S.; Cowling, T. G., The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, 1990, Cambridge University Press
[67] Development of a 3D Discontinuous Galerkin Method for the Second-Order Boltzmann-Curtiss Based Hydrodynamic Models of Diatomic and Polyatomic Gases, 2018, Gyeongsang National University: Gyeongsang National University South Korea, (Ph.D. Thesis)
[68] Krivodonova, L., Limiters for high-order discontinuous Galerkin methods, J. Comput. Phys., 226, 879-896, 2007 · Zbl 1125.65091
[69] Johnsen, E.; Colonius, T., Implementation of WENO schemes in compressible multicomponent flow problems, J. Comput. Phys., 219, 715-732, 2006 · Zbl 1189.76351
[70] Cockburn, B.; Shu, C.-W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 2440-2463, 1998 · Zbl 0927.65118
[71] Ketcheson, D. I., Highly efficient strong stability-preserving Runge-Kutta methods with low-storage implementations, SIAM J. Sci. Comput., 30, 2113-2136, 2008 · Zbl 1168.65382
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.