×

Strong backward error analysis of symplectic integrators for stochastic Hamiltonian systems. (English) Zbl 07834031

Summary: Backward error analysis is a powerful tool in order to detect the long-term conservative behavior of numerical methods. In this work, we present a long-term analysis of symplectic stochastic numerical integrators, applied to Hamiltonian systems with multiplicative noise. We first compute and analyze the associated stochastic modified differential equations. Then, suitable bounds for the coefficients of such equations are provided towards the computation of long-term estimates for the Hamiltonian deviations occurring along the aforementioned numerical dynamics. This result generalizes Benettin-Giorgilli Theorem to the scenario of stochastic symplectic methods. Finally, specific numerical methods are considered, in order to provide a numerical evidence confirming the effectiveness of the theoretical investigation.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
65L07 Numerical investigation of stability of solutions to ordinary differential equations

Software:

LIMbook
Full Text: DOI

References:

[1] Abdulle, A.; Cohen, D.; Vilmart, G.; Zygalakis, K. C., High weak order methods for stochastic differential equations based on modified equations. SIAM J. Sci. Comput., A1800-A1823 (2012) · Zbl 1246.65008
[2] Abdulle, A.; Vilmart, G.; Zygalakis, K. C., High order numerical approximation of the invariant measure of ergodic SDEs. SIAM J. Sci. Comput., 1600-1622 (2014) · Zbl 1310.65007
[3] Anton, C., Weak backward error analysis for stochastic Hamiltonian systems. BIT Numer. Math., 613-646 (2019) · Zbl 1495.65009
[4] Bazzani, A.; Siboni, S.; Turchetti, G., Diffusion in Hamiltonian systems with a small stochastic perturbation. Physica D, 8-21 (1994) · Zbl 1194.34117
[5] Benettin, G.; Giorgilli, A., On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms. J. Stat. Phys., 1117-1143 (1994) · Zbl 0842.58020
[6] Blanes, S.; Casas, F., A Concise Introduction to Geometric Numerical Integration (2016), CRC Press: CRC Press New York · Zbl 1343.65146
[7] Brehier, C. E.; Cohen, D.; Jahnke, T., Splitting integrators for stochastic Lie-Poisson systems. Math. Comput., 2167-2216 (2023) · Zbl 07689728
[8] Brugnano, L.; Iavernaro, F., Line Integral Methods for Conservative Problems (2016), CRC Press: CRC Press New York · Zbl 1335.65097
[9] Buckwar, E.; Rössler, A.; Winkler, R., Stochastic Runge-Kutta methods for Itô SODEs with small noise. SIAM J. Sci. Comput., 1789-1808 (2010) · Zbl 1215.65013
[10] Burrage, K.; Burrage, P. M., Low rank Runge-Kutta methods, symplecticity and stochastic Hamiltonian problems with additive noise. J. Comput. Appl. Math., 3920-3930 (2012) · Zbl 1245.65007
[11] Burrage, K.; Burrage, P. M., Order conditions of stochastic Runge-Kutta methods by B-series. SIAM J. Numer. Anal., 1626-1646 (2000) · Zbl 0983.65006
[12] Chartier, P.; Hairer, E.; Vilmart, G., Algebraic structures of B-series. Found. Comput. Math., 4, 407-427 (2010) · Zbl 1201.65124
[13] Chen, C.; Cohen, D.; D’Ambrosio, R.; Lang, A., Drift-preserving numerical integrators for stochastic Hamiltonian systems. Adv. Comput. Math., 27 (2020) · Zbl 07188447
[14] Chen, C.; Cohen, D.; Hong, J., Conservative methods for stochastic differential equations with conserved quantity. Int. J. Numer. Anal. Model., 435-456 (2016) · Zbl 1344.60066
[15] Cohen, D.; Dujardin, G., Energy-preserving integrators for stochastic Poisson systems. Commun. Math. Sci., 1523-1539 (2014) · Zbl 1310.60074
[16] Cohen, D.; Vilmart, G., Drift-preserving numerical integrators for stochastic Poisson systems. Int. J. Comput. Math., 4-20 (2022) · Zbl 1480.65014
[17] D’Ambrosio, R., Numerical Approximation of Ordinary Differential Problems. From Deterministic to Stochastic Numerical Methods (2023), Springer · Zbl 1535.65001
[18] D’Ambrosio, R.; Di Giovacchino, S., Long-term analysis of stochastic Hamiltonian systems under time discretizations. SIAM J. Sci. Comput., 257-A 288 (2023) · Zbl 1512.65014
[19] D’Ambrosio, R.; Di Giovacchino, S., Numerical conservation issues for the stochastic Korteweg-de Vries equation. J. Comput. Appl. Math. (2023) · Zbl 07697399
[20] D’Ambrosio, R.; Di Giovacchino, S.; Giordano, G.; Paternoster, B., On the conservative character of discretizations to Itô-Hamiltonian systems with small noise. Appl. Math. Lett. (2023) · Zbl 1524.65029
[21] D’Ambrosio, R.; Di Giovacchino, S., How do Monte Carlo estimates affect stochastic geometric numerical integration?. Int. J. Comput. Math., 1, 192-208 (2023) · Zbl 1524.65028
[22] Debussche, A.; Faou, E., Weak backward error analysis. SIAM J. Numer. Anal., 1735-1752 (2012) · Zbl 1256.65002
[23] Deng, J., Strong backward error analysis for Euler-Maruyama method. Int. J. Numer. Anal. Model., 1, 1-21 (2016) · Zbl 1347.65011
[24] Giovacchino, S. D.; Higham, D. J.; Zygalakis, K., Backward error analysis and the qualitative behaviour of stochastic optimization algorithms: application to stochastic coordinate descent (2023), submitted for publication
[25] Gard, T. C., Introduction to Stochastic Differential Equations (1988), Marcel Dekker Inc.: Marcel Dekker Inc. New York-Basel · Zbl 0628.60064
[26] Gardiner, C. W., Handbook of Stochastic Methods, for Physics, Chemistry and the Natural Sciences (2004), Springer-Verlag · Zbl 1143.60001
[27] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations (2006), Springer · Zbl 1094.65125
[28] Griffiths, D. F.; Higham, D. J., Numerical Methods for Ordinary Differential Equations: Initial Value Problems (2010), Springer · Zbl 1209.65070
[29] Higham, D. J.; Kloeden, P. E., An Introduction to the Numerical Simulation of Stochastic Differential Equations (2021), SIAM · Zbl 1530.65005
[30] Kloeden, P. E.; Platen, E., Numerical Solution of Stochastic Differential Equations. Applications of Mathematics (1992), Springer-Verlag: Springer-Verlag Berlin, part of · Zbl 0925.65261
[31] Kopec, M., Weak backward error analysis for Langevin process. BIT Numer. Math., 4, 1057-1103 (2015) · Zbl 1346.65001
[32] Kopec, M., Weak backward error analysis for overdamped Langevin processes. IMA J. Numer. Anal., 2, 583-614 (2015) · Zbl 1365.65016
[33] Hong, J.; Sun, L., Symplectic Integration of Stochastic Hamiltonian Systems (2022), Springer · Zbl 07634793
[34] Iserles, A., A First Course in the Numerical Analysis of Differential Equations (2008), Cambridge University Press: Cambridge University Press Cambridge
[35] Kang, F.; Mengzhao, Q., Symplectic Geometric Algorithms for Hamiltonian Systems (2010), Springer: Springer Berlin, Heidelberg · Zbl 1207.65149
[36] Laurent, A.; Munthe-Kaas, H. Z., The universal equivariance properties of exotic aromatic B-series (2023), submitted for publication
[37] Laurent, A.; Vilmart, G., Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs. Math. Comput., 321, 169-202 (2020) · Zbl 1433.60078
[38] Lazaro-Cami’, J. A.; Ortega, J. P., Stochastic Hamiltonian dynamical systems. Rep. Math. Phys., 65-122 (2008) · Zbl 1147.37032
[39] Leimkuhler, B.; Reich, S., Geometric Integrators in Hamiltonian Mechanics (2003), Cambridge University Press: Cambridge University Press Cambridge
[40] Leimkuhler, B.; Reich, S., Simulating Hamiltonian Dynamics (2005), Cambridge University Press: Cambridge University Press Cambridge
[41] Ma, Q.; Ding, D.; Ding, X., Symplectic conditions and stochastic generating functions of stochastic Runge-Kutta methods for stochastic Hamiltonian systems with multiplicative noise. Appl. Math. Comput.. Theory Probab. Appl., 750-766 (1986)
[42] Milstein, G. N.; Repin, Y. M.; Tretyakov, M. V., Numerical methods for stochastic systems preserving symplectic structure. SIAM J. Numer. Anal., 1583-1604 (2002) · Zbl 1028.60064
[43] Milstein, G. N.; Repin, Yu. M.; Tretyakov, M. V., Symplectic integration of Hamiltonian systems with additive noise. SIAM J. Numer. Anal., 2066-2088 (2002) · Zbl 1019.60056
[44] Milstein, G. N.; Tretyakov, M. V., Stochastic Numerics for Mathematical Physics, Scientic Computation (2004), Springer-Verlag: Springer-Verlag Berlin · Zbl 1085.60004
[45] Misawa, T., Energy conservative stochastic difference scheme for stochastic H dynamical systems. Jpn. J. Ind. Appl. Math., 119-128 (2000) · Zbl 1306.37094
[46] Rössler, A., Second order Runge-Kutta methods for Itô stochastic differential equations. SIAM J. Numer. Anal., 1713-1738 (2009) · Zbl 1193.65006
[47] Rössler, A., Runge-Kutta methods for Itô stochastic differential equations with scalar noise. BIT Numer. Math., 97-110 (2006) · Zbl 1091.65004
[48] Sanz-Serna, J. M.; Calvo, M. P., Numerical Hamiltonian Problems (1994), Chapman & Hall · Zbl 0816.65042
[49] Shardlow, T., Modified equations for stochastic differential equations. BIT Numer. Math., 111-125 (2006) · Zbl 1091.65005
[50] Stuart, A. M.; Humphries, A. R., Dynamical Systems and Numerical Analysis. Cambridge Monographs on Applied and Computational Mathematics (1999), Cambridge University Press, part of
[51] Talay, D., Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Process. Relat. Fields, 1-36 (2002)
[52] Zhang, Z.; Karniadakis, G. E., Numerical Methods for Stochastic Partial Differential Equations with White Noise (2017), Springer · Zbl 1380.65021
[53] Zygalakis, K. C., On the existence and the applications of modified equations for stochastic differential equations. SIAM J. Sci. Comput., 102-130 (2011) · Zbl 1236.60069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.