×

Apodizer design to efficiently couple light into a fiber Bragg grating. (English) Zbl 1516.65048

Summary: We provide an optimal control framework for efficiently coupling light in a bare fiber into Bragg gratings with cubic nonlinearity. The light-grating interaction excites gap solitons, a type of localized nonlinear coherent state which propagates with a central frequency in the forbidden band gap, resulting in a dramatically slower group velocity. Due to the nature of the band gap, a substantial amount of light is back-reflected by the grating’s strong reflective properties. We optimize, via a projected gradient descent method, the transmission efficiency of previously designed nonuniform grating structures in order to couple more slow light into the grating. We further explore the space of possible grating designs, using genetic algorithms, along with a previously unexplored design parameter: the grating chirp. Through these methods, we find structures that couple a greater fraction of light into the grating with the added bonus of creating slower pulses.

MSC:

65K10 Numerical optimization and variational techniques
78A60 Lasers, masers, optical bistability, nonlinear optics
49M05 Numerical methods based on necessary conditions

Software:

Matlab

References:

[1] Aceves, A. B. and Wabnitz, S., Self-induced transparency solitons in nonlinear refractive periodic media, Phys. Lett. A, 141 (1989), pp. 37-42.
[2] Adriazola, J., On the Role of Tikhonov Regularizations in Standard Optimization Problems, preprint, arXiv:2207.01139, 2022.
[3] Adriazola, J. and Goodman, R. H., Optimal control approach to gradient-index design for beam reshaping, J. Opt. Soc. Amer. A, 39 (2022), pp. 907-915, doi:10.1364/JOSAA.450257.
[4] Adriazola, J. and Goodman, R. H., Reduction-based strategy for optimal control of Bose-Einstein condensates, Phys. Rev. E, 105 (2022), 025311, doi:10.1103/PhysRevE.105.025311.
[5] Adriazola, J., Goodman, R. H., and Kevrekidis, P. G., Efficient manipulation of Bose-Einstein condensates in a double-well potential, Commun. Nonlinear Sci. Numer. Simul., 122 (2023), 107219. · Zbl 1517.35199
[6] Agrawal, G. P. and Radic, S., Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing, IEEE Photon. Technol. Lett., 6 (1994), pp. 995-997.
[7] Borzì, A., Ciaramella, G., and Sprengel, M., Formulation and Numerical Solution of Quantum Control Problems, SIAM, 2017, doi:10.1137/1.9781611974843. · Zbl 1402.81006
[8] Boyd, S. and Vandenberghe, L., Convex Optimization, Vol. 1, Cambridge University Press, Cambridge, 2004. · Zbl 1058.90049
[9] Calarco, T., Hinds, E. A., Jaksch, D., Schmiedmayer, J., Cirac, J. I., and Zoller, P., Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps, Phys. Rev. A, 61 (2000), 022304.
[10] Caneva, T., Calarco, T., and Montangero, S., Chopped random-basis quantum optimization, Phys. Rev. A, 84 (2011), 022326, doi:10.1103/PhysRevA.84.022326.
[11] de Sterke, C. M. and Sipe, J., Gap solitons, in Progress in Optics, Vol. 33, Elsevier, 1994, pp. 203-260.
[12] DeSterke, M., Propagation through apodized gratings, Opt. Express, 3 (1998), pp. 405-410.
[13] Eggleton, B. J., de Sterke, C. M., and Slusher, R. E., Nonlinear pulse propagation in Bragg gratings, J. Opt. Soc. Amer. B, 14 (1997), pp. 2980-2993, doi:10.1364/JOSAB.14.002980.
[14] Eggleton, B. J., Slusher, R. E., de Sterke, C. M., Krug, P. A., and Sipe, J. E., Bragg grating solitons, Phys. Rev. Lett., 76 (1996), pp. 1627-1630, doi:10.1103/PhysRevLett.76.1627.
[15] Gelfand, I. and Fomin, S., Calculus of Variations, Prentice-Hall, Englewood Cliffs, NJ, 1963. · Zbl 0127.05402
[16] Goodman, R. H., Slusher, R. E., and Weinstein, M. I., Stopping light on a defect, J. Opt. Soc. Amer. B, 19 (2002), pp. 1635-1652.
[17] Goodman, R. H., Slusher, R. E., Weinstein, M. I., and Klaus, M., Trapping light with grating defects, in Mathematical Studies in Nonlinear Wave Propagation, Clemence, D. and Tang, G. eds., AMS, Providence, RI, 2005, pp. 83-92. · Zbl 1104.78008
[18] Hintermüller, M., Marahrens, D., Markowich, P. A., and Sparber, C., Optimal bilinear control of Gross-Pitaevskii equations, SIAM J. Control Optim., 51 (2013), pp. 2509-2543, doi:10.1137/120866233. · Zbl 1277.49005
[19] Hohenester, U., Rekdal, P. K., Borzì, A., and Schmiedmayer, J., Optimal quantum control of Bose-Einstein condensates in magnetic microtraps, Phys. Rev. A, 75 (2007), 023602.
[20] Krauss, T. F., Why do we need slow light?, Nat. Photon., 2 (2008), pp. 448-450.
[21] Lenz, G., Eggleton, B., Madsen, C., and Slusher, R., Optical delay lines based on optical filters, IEEE J. Quantum Elect., 37 (2001), pp. 525-532, doi:10.1109/3.914401.
[22] MacNamara, S. and Strang, G., Splitting Methods in Communication, Imaging, Science, and Engineering, Springer, 2017.
[23] Mennemann, J., Matthes, D., Weishaupl, R., and Langen, T., Optimal control of Bose-Einstein condensates in three dimensions, New J. Phys., 17 (2015), 113027.
[24] Mok, J., De Sterke, C. M., Littler, I., and Eggleton, B., Dispersionless slow light using gap solitons, Nat. Phys., 2 (2006), pp. 775-780.
[25] Moloney, J. V. and Newell, A., Nonlinear Optics, CRC Press, 2018. · Zbl 1054.78001
[26] Newell, A. C., Solitons in Mathematics and Physics, , SIAM, 1985, doi:10.1137/1.9781611970227. · Zbl 0565.35003
[27] Rosenthal, A. and Horowitz, M., Analysis and design of nonlinear fiber Bragg gratings and their application for optical compression of reflected pulses, Opt. Lett., 31 (2006), pp. 1334-1336.
[28] Rosenthal, A. and Horowitz, M., Bragg-soliton formation and pulse compression in a one-dimensional periodic structure, Phys. Rev. E, 74 (2006), 066611.
[29] Rosenthal, A. and Horowitz, M., Efficient method for launching in-gap solitons in fiber Bragg gratings using a two-segment apodization profile, Opt. Lett., 33 (2008), pp. 678-680.
[30] Sahin, E., Blanco-Redondo, A., Sohn, B.-U., Cao, Y., Chen, G. F., Ng, D. K., Eggleton, B. J., and Tan, D. T., Wideband spectral enhancement through on-chip Bragg-soliton dynamics, Adv. Photon. Res., 2 (2021), 2100107.
[31] Sahin, E., Blanco-Redondo, A., Xing, P., Ng, D. K., Png, C. E., Tan, D. T., and Eggleton, B. J., Bragg soliton compression and fission on CMOS-compatible ultra-silicon-rich nitride, Laser Photon. Rev., 13 (2019), 1900114.
[32] Sørensen, J. J., Aranburu, M., Heinzel, T., and Sherson, J., Approaching the Quantum Speed Limit with Global-local Optimization, preprint, arXiv:1802.07521, 2018.
[33] Storn, R. and Price, K., Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim., 11 (1997), pp. 341-359. · Zbl 0888.90135
[34] Tikhonov, A. N., Goncharsky, A. V., Stepanov, V. V., and Yagola, A. G., Numerical Methods for the Solution of Ill-Posed Problems, Springer, Netherlands, 1995, doi:10.1007/978-94-015-8480-7. · Zbl 0831.65059
[35] Trefethen, L. N., Spectral Methods in MATLAB, SIAM, 2000, doi:10.1137/1.9780898719598. · Zbl 0953.68643
[36] von Winckel, G. and Borzì, A., Computational techniques for a quantum control problem with \(H^1\) -cost, Inverse Problems, 24(2008), 034007. · Zbl 1145.81412
[37] Wang, X., Zhao, Y., Ding, Y., Xiao, S., and Dong, J., Tunable optical delay line based on integrated grating-assisted contradirectional couplers, Photon. Res., 6 (2018), pp. 880-886, doi:10.1364/PRJ.6.000880.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.