×

Topology of asymptotically conical Calabi-Yau and \(G_2\) manifolds and desingularization of nearly Kähler and nearly \(G_2\) conifolds. (English) Zbl 1512.53049

Summary: A natural approach to the construction of nearly \(G_2\) manifolds lies in resolving nearly \(G_2\) spaces with isolated conical singularities by gluing in asymptotically conical \(G_2\) manifolds modelled on the same cone. If such a resolution exits, one expects there to be a family of nearly \(G_2\) manifolds, whose endpoint is the original nearly \(G_2\) conifold and whose parameter is the scale of the glued in asymptotically conical \(G_2\) manifold. We show that in many cases such a curve does not exist. The non-existence result is based on a topological result for asymptotically conical \(G_2\) manifolds: if the rate of the metric is below \(-3\), then the \(G_2 \, 4\)-form is exact if and only if the manifold is Euclidean \(\mathbb{R}^7\). A similar construction is possible in the nearly Kähler case, which we investigate in the same manner with similar results. In this case, the non-existence results is based on a topological result for asymptotically conical Calabi-Yau 6-manifolds: if the rate of the metric is below \(-3\), then the square of the Kähler form and the complex volume form can only be simultaneously exact, if the manifold is Euclidean \(\mathbb{R}^6\).

MSC:

53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C10 \(G\)-structures
32Q25 Calabi-Yau theory (complex-analytic aspects)
53C29 Issues of holonomy in differential geometry

References:

[1] Bär, C., Real killing spinors and holonomy, Commun. Math. Phys., 154, 509-521 (1993) · Zbl 0778.53037 · doi:10.1007/BF02102106
[2] Bilal, A.; Metzger, S., Compact weak \(G_2\)-manifolds with conical singularities, Nucl. Phys. B, 663, 1-2, 343-364 (2003) · Zbl 1028.83031 · doi:10.1016/S0550-3213(03)00388-2
[3] Biquard, O., Désingularisation de métriques d’Einstein. I, Invent. Math., 192, 1, 197-252 (2013) · Zbl 1275.53041 · doi:10.1007/s00222-012-0410-7
[4] Biquard, O., Désingularisation de métriques d’Einstein. II, Invent. Math., 204, 2, 473-504 (2016) · Zbl 1342.53065 · doi:10.1007/s00222-015-0619-3
[5] Biquard, O., Hein, H.-J.: The renormalized volume of a 4-dimensional Ricci-flat ALE space, J. Differ. Geom. to appear. arXiv:1901.03647 · Zbl 1518.53036
[6] Böhm, C., Inhomogeneous Einstein metrics on low-dimensional spheres and other low-dimensional spaces, Invent. Math., 134, 1, 145-176 (1998) · Zbl 0965.53033 · doi:10.1007/s002220050261
[7] Bryant, R.: Some remarks on \(G_2\)-structures. In: Proceedings of Gökova Geometry-Topology Conference 2005, pp 75-109, Gökova Geometry/Topology Conference (GGT), Gökova, (2006) · Zbl 1115.53018
[8] Bryant, RL; Salamon, S., On the construction of some complete metrics with exceptional holonomy, Duke Math. J., 58, 3, 829-850 (1989) · Zbl 0681.53021 · doi:10.1215/S0012-7094-89-05839-0
[9] Chan, YM, Desingularizations of Calabi-Yau 3-folds with a conical singularity, Q. J. Math., 57, 2, 151-181 (2006) · Zbl 1110.32010 · doi:10.1093/qmath/hai009
[10] Chan, YM, Desingularizations of Calabi-Yau 3-folds with conical singularities. II. The obstructed case, Q. J. Math., 60, 1, 1-44 (2009) · Zbl 1158.14302 · doi:10.1093/qmath/ham049
[11] Cheeger, J.; Tian, G., On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay, Invent. Math., 118, 3, 493-571 (1994) · Zbl 0814.53034 · doi:10.1007/BF01231543
[12] Chiossi, S., Salamon, S.: The intrinsic torsion of SU(3) and G2 structures. Differential geometry, Valencia,: pp 115-133, p. 2002. World Sci. Publ, River Edge, NJ (2001) · Zbl 1024.53018
[13] Conlon, RJ; Hein, H-J, Asymptotically conical Calabi-Yau manifolds, I, Duke Math. J., 162, 15, 2855-2902 (2013) · Zbl 1283.53045 · doi:10.1215/00127094-2382452
[14] Dwivedi, S., Singhal, R.: Deformation theory of nearly \(G_2\) manifolds, to appear in Comm. Anal. Geom
[15] Foscolo, L., Deformation theory of nearly Kähler manifolds, J. Lond. Math. Soc., 95, 2, 586-612 (2017) · Zbl 1376.53067 · doi:10.1112/jlms.12033
[16] Foscolo, L.; Haskins, M., New \(G_2\)-holonomy cones and exotic nearly Kähler structures on \(S^6\) and \(S^3 \times S^3\),, Ann. Math., 185, 2, 59-130 (2017) · Zbl 1381.53086
[17] Foscolo, L.; Haskins, M.; Nordström, J., Infinitely many new families of complete cohomogeneity one \(G_2\)-manifolds: \(G_2\) analogues of the Taub-NUT and Eguchi-Hanson spaces, J. Eur. Math. Soc. (JEMS), 23, 7, 2153-2220 (2021) · Zbl 1482.53057 · doi:10.4171/JEMS/1051
[18] Hitchin, N.: Stable forms and special metrics, Contemp. Math. 288, Journal of the American Mathematical Society, Providence, RI (2001) · Zbl 1004.53034
[19] Karigiannis, S., Desingularization of \(G_2\) manifolds with isolated conical singularities, Geom. Topol., 13, 3, 1583-1655 (2009) · Zbl 1161.53348 · doi:10.2140/gt.2009.13.1583
[20] Karigiannis, S.; Lotay, JD, Deformation of \(G_2\) conifolds, Commun. Anal. Geom., 28, 5, 1057-1210 (2020) · Zbl 1475.53055 · doi:10.4310/CAG.2020.v28.n5.a1
[21] Kröncke, K., Szabó, Á.: Optimal coordinates for Ricci-flat conifolds, arXiv:2203.01711
[22] Lockhart, R., Fredholm, Hodge and Liouville theorems on noncompact manifolds, Trans. Am. Math. Soc., 301, 1, 1-35 (1987) · Zbl 0623.58019 · doi:10.1090/S0002-9947-1987-0879560-0
[23] Lockhart, R.; McOwen, R., Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4, 12, 409-447 (1985) · Zbl 0615.58048
[24] Morteza, P.; Viaclovsky, JA, The Calabi metric and desingularization of Einstein orbifolds, J. Eur. Math. Soc. (JEMS), 22, 4, 1201-1245 (2020) · Zbl 1448.53054 · doi:10.4171/JEMS/943
[25] Nagy, PA; Semmelmann, U., Deformations of nearly \(G_2\) structures, J. Lond. Math. Soc., 104, 2, 1795-1811 (2021) · Zbl 1496.53033 · doi:10.1112/jlms.12475
[26] Ozuch, T.: Noncollapsed degeneration of Einstein 4-manifolds I, Geom. Topol., to appear. arXiv:1909.12957 · Zbl 1527.53045
[27] Ozuch, T.: Noncollapsed degeneration of Einstein 4-manifolds II, Geom. Topol., to appear. arXiv:1909.12960 · Zbl 1507.53034
[28] Ozuch, T.: Higher order obstructions to the desingularization of Einstein metrics, Camb. J. Math. to appear. arXiv:2012.13316 · Zbl 1527.53045
[29] Ozuch, T.: Integrability of Einstein deformations and desingularizations, Commun. Pure Appl. Math., to appear. arXiv:2105.13193 · Zbl 1527.53045
[30] Tashiro, Y., Complete Riemannian manifolds and some vector fields, Trans. Am. Math. Soc., 117, 251-275 (1965) · Zbl 0136.17701 · doi:10.1090/S0002-9947-1965-0174022-6
[31] van Coevering, C., Ricci-flat Kähler metrics on crepant resolutions of Kähler cones, Math. Ann., 347, 3, 581-611 (2010) · Zbl 1195.53100 · doi:10.1007/s00208-009-0446-1
[32] Weiss, H.; Witt, F., A heat flow for special metrics, Adv. Math., 231, 3288-3322 (2012) · Zbl 1264.53064 · doi:10.1016/j.aim.2012.08.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.