×

On complete convergence of moments in exact asymptotics under normal approximation. (English. Russian original) Zbl 1536.60033

Theory Probab. Appl. 68, No. 4, 622-629 (2024); translation from Teor. Veroyatn. Primen. 68, No. 4, 769-778 (2023).
Summary: For the sums of the form \(\overline I_s(\varepsilon) = \sum_{n\geqslant 1} n^{s-r/2}\mathbf{E}|S_n|^r\,\mathbf{I}[|S_n|\geqslant \varepsilon\,n^\gamma]\), where \(S_n = X_1 +\dots + X_n, X_n, n\geqslant 1\), is a sequence of independent and identically distributed random variables (r.v.’s) \(s+1 \geqslant 0\), \(r\geqslant 0\), \(\gamma>1/2\), and \(\varepsilon>0\), new results on their behavior are provided. As an example, we obtain the following generalization of C. C. Heyde’s result [J. Appl. Probab. 12, 173–175 (1975; Zbl 0305.60008)]: for any \(r\geqslant 0, \lim_{\varepsilon\searrow 0}\varepsilon^2\sum_{n\geqslant 1} n^{-r/2} \mathbf{E}|S_n|^r\,\mathbf I[|S_n|\geqslant \varepsilon\, n] =\mathbf{E} |\xi|^{r+2}\) if and only if \(\mathbf{E} X=0\) and \(\mathbf{E} X^2=1\), and also \(\mathbf{E}|X|^{2+r/2}<\infty\) if \(r < 4, \mathbf{E}|X|^r<\infty\) if \(r>4\), and \(\mathbf{E} X^4 \ln{(1+|X|)}<\infty\) if \(r=4\). Here, \( \xi\) is a standard Gaussian r.v.

MSC:

60F15 Strong limit theorems

Citations:

Zbl 0305.60008
Full Text: DOI

References:

[1] L. E. Baum and M. Katz, Convergence rates in the law of large numbers, Trans. Amer. Math. Soc., 120 (1965), pp. 108-123, https://doi.org/10.1090/S0002-9947-1965-0198524-1. · Zbl 0142.14802
[2] R. Chen, A remark on the tail probability of a distribution, J. Multivariate Anal., 8 (1978), pp. 328-333, https://doi.org/10.1016/0047-259X(78)90084-2. · Zbl 0376.60033
[3] C. C. Heyde, A supplement to the strong law of large numbers, J. Appl. Probab., 12 (1975), pp. 173-175, https://doi.org/10.2307/3212424. · Zbl 0305.60008
[4] L. V. Rozovsky, On exact asymptotics in the weak law of large numbers for sums of independent random variables with a common distribution function from the domain of attraction of a stable law II, Theory Probab. Appl., 49 (2005), pp. 724-734, https://doi.org/10.1137/S0040585X97981408. · Zbl 1103.60025
[5] W. Liu and Z. Lin, Precise asymptotics for a new kind of complete moment convergence, Statist. Probab. Lett., 76 (2006), pp. 1787-1799, https://doi.org/10.1016/j.spl.2006.04.027. · Zbl 1104.60015
[6] L. V. Rozovsky, Sums of independent random variables with finite variances: Moderate deviations and nonuniform bounds in the CLT, J. Math. Sci. (N.Y.), 133 (2006), pp. 1345-1355, https://doi.org/10.1007/s10958-006-0045-6.
[7] L. V. Rozovsky, On the convergence rate in precise asymptotics, Theory Probab. Appl., 68 (2023), pp. 46-61, https://doi.org/10.1137/S0040585X97T991271. · Zbl 1515.60075
[8] V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, Precise asymptotics over a small parameter for a series of large deviation probabilities, Theory Stoch. Process., 13 (2007), pp. 44-56. · Zbl 1152.60018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.