×

Light ray fluctuations in simplicial quantum gravity. (English) Zbl 1497.83013

Summary: A non-perturbative study on the quantum fluctuations of light ray propagation through a quantum region of spacetime is long overdue. Within the theory of Lorentzian simplicial quantum gravity, we compute the probabilities for a test light ray to land at different locations after travelling through a symmetry-reduced box region in 2, 3 and 4 spacetime dimensions. It is found that for fixed boundary conditions, light ray fluctuations are generically large when all coupling constants are relatively small in absolute value. For fixed coupling constants, as the boundary size is decreased light ray fluctuations first increase and then decrease in a 2D theory with the cosmological constant, Einstein-Hilbert and \(R\)-squared terms. While in 3D and 4D theories with the cosmological constant and Einstein-Hilbert terms, as the boundary size is decreased light ray fluctuations just increase. Incidentally, when studying 2D quantum gravity we show that the global time-space duality with the cosmological constant and Einstein-Hilbert terms noted previously also holds when arbitrary even powers of the Ricci scalar are added. We close by discussing how light ray fluctuations can be used in obtaining the continuum limit of non-perturbative Lorentzian quantum gravity.

MSC:

83C45 Quantization of the gravitational field
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
62D20 Causal inference from observational studies
81S40 Path integrals in quantum mechanics
81V80 Quantum optics

References:

[1] Malafarina, D., Classical collapse to black holes and quantum bounces: a review, Universe, 3, 48 (2017) · doi:10.3390/universe3020048
[2] Mukhanov, V., Physical Foundations of Cosmology (2005), Cambridge: Cambridge University Press, Cambridge · Zbl 1095.83002
[3] Bianchi, E.; Martin-Dussaud, P., Causal structure in spin-foams (2021)
[4] Fay, D.; Butterfield, J., Recovering general relativity from a Planck scale discrete theory of quantum gravity (2021)
[5] Surya, S., The causal set approach to quantum gravity, Living Rev. Relativ., 22, 12 (2019) · Zbl 1442.83029 · doi:10.1007/s41114-019-0023-1
[6] Ambjorn, J.; Goerlich, A.; Jurkiewicz, J.; Loll, R., Nonperturbative quantum gravity, Phys. Rep., 519, 127-210 (2012) · doi:10.1016/j.physrep.2012.03.007
[7] Loll, R., Quantum gravity from causal dynamical triangulations: a review, Class. Quantum Grav., 37 (2020) · Zbl 1478.83095 · doi:10.1088/1361-6382/ab57c7
[8] Ding, J., Complex, Lorentzian, and Euclidean simplicial quantum gravity: numerical methods and physical prospects, Class. Quantum Grav., 39 (2022) · Zbl 1486.83043 · doi:10.1088/1361-6382/ac4b04
[9] Regge, T., General relativity without coordinates, Il Nuovo Cimento, 19, 558-571 (1961) · doi:10.1007/bf02733251
[10] Roček, M.; Williams, R. M., Quantum Regge calculus, Phys. Lett. B, 104, 31-37 (1981) · doi:10.1016/0370-2693(81)90848-0
[11] Williams, R. M.; Tuckey, P. A., Regge calculus: a brief review and bibliography, Class. Quantum Grav., 9, 1409-1422 (1992) · Zbl 0991.83532 · doi:10.1088/0264-9381/9/5/021
[12] Loll, R., Discrete approaches to quantum gravity in four dimensions, Living Rev. Relativ., 1, 12 (1998) · Zbl 1023.83011 · doi:10.12942/lrr-1998-13
[13] Hamber, H. W., Quantum Gravitation: The Feynman Path Integral Approach (2009), Berlin: Springer, Berlin · Zbl 1171.81001
[14] Barrett, J. W.; Oriti, D.; Williams, R. M.; Castellani, L.; Anna, C.; D’Auria, R.; Fré, P., Tullio Regge’s legacy: Regge calculus and discrete gravity, Tullio Regge: An Eclectic Genius (2019), Singapore: World Scientific, Singapore
[15] Tate, K.; Visser, M., Fixed-topology Lorentzian triangulations: quantum Regge calculus in the Lorentzian domain, J. High Energy Phys. (2011) · Zbl 1306.83029 · doi:10.1007/jhep11(2011)072
[16] Tate, K.; Visser, M., Realizability of the Lorentzian (n, 1)-simplex, J. High Energy Phys. (2012) · Zbl 1306.83030 · doi:10.1007/jhep01(2012)028
[17] Asante, S. K.; Dittrich, B.; Padua-Argüelles, J., Effective spin foam models for Lorentzian quantum gravity, Class. Quantum Grav., 38 (2021) · Zbl 1510.83024 · doi:10.1088/1361-6382/ac1b44
[18] Dittrich, B.; Gielen, S.; Schander, S., Lorentzian quantum cosmology goes simplicial, Class. Quantum Grav., 39 (2022) · Zbl 1484.83107 · doi:10.1088/1361-6382/ac42ad
[19] Ding, J., Time-space duality in 2D quantum gravity, Class. Quantum Grav., 39 (2022) · Zbl 1484.83025 · doi:10.1088/1361-6382/ac4615
[20] Asante, S. K.; Dittrich, B.; Padua-Argüelles, J., Complex actions and causality violations: applications to Lorentzian quantum cosmology (2021) · Zbl 1522.83055
[21] Sorkin, R., Time-evolution problem in Regge calculus, Phys. Rev. D, 12, 385-396 (1975) · doi:10.1103/physrevd.12.385
[22] Sorkin, R. D., Lorentzian angles and trigonometry including lightlike vectors (2019)
[23] Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V. B., Julia: a fresh approach to numerical computing, SIAM Rev., 59, 65-98 (2017) · Zbl 1356.68030 · doi:10.1137/141000671
[24] Jan, A.; Gizbert-Studnicki, J.; Görlich, A.; Jurkiewicz, J.; Loll, R., Renormalization in quantum theories of geometry, Front. Phys., 8, 247 (2020) · doi:10.3389/fphy.2020.00247
[25] Steinhaus, S., Coarse graining spin foam quantum gravity-A review, Front. Phys., 8, 295 (2020) · doi:10.3389/fphy.2020.00295
[26] Montvay, I.; Münster, G., Quantum Fields on a Lattice (1994), Cambridge: Cambridge University Press, Cambridge
[27] Callaway, D. J E., Triviality pursuit: Can elementary scalar particles exist?, Phys. Reports, 167, 241-320 (1988)
[28] Feynman, R. P.; Hibbs, A. R., Quantum Mechanics and Path Integrals (1965), New York: McGraw-Hill, New York · Zbl 0176.54902
[29] Herbert, H., Vacuum condensate picture of quantum gravity, Symmetry, 11, 87 (2019) · doi:10.3390/sym11010087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.