×

Bayesian classification, anomaly detection, and survival analysis using network inputs with application to the microbiome. (English) Zbl 07656973

Summary: While the study of a single network is well established, technological advances now allow for the collection of multiple networks with relative ease. Increasingly, anywhere from several to thousands of networks can be created from brain imaging, gene coexpression data, or microbiome measurements. And these networks, in turn, are being looked to as potentially powerful features to be used in modeling. However, with networks being non-Euclidean in nature, how best to incorporate them into standard modeling tasks is not obvious. In this paper we propose a Bayesian modeling framework that provides a unified approach to binary classification, anomaly detection, and survival analysis with network inputs. We encode the networks in the kernel of a Gaussian process prior via their pairwise differences, and we discuss several choices of provably positive definite kernel that can be plugged into our models. Although our methods are widely applicable, we are motivated here, in particular, by microbiome research (where network analysis is emerging as the standard approach for capturing the interconnectedness of microbial taxa across both time and space) and its potential for reducing preterm delivery and improving personalization of prenatal care.

MSC:

62Pxx Applications of statistics

References:

[1] ARROYO RELIÓN, J. D., KESSLER, D., LEVINA, E. and TAYLOR, S. F. (2019). Network classification with applications to brain connectomics. Ann. Appl. Stat. 13 1648-1677. · Zbl 1433.62314 · doi:10.1214/19-AOAS1252
[2] ARROYO, J., ATHREYA, A., CAPE, J., CHEN, G., PRIEBE, C. E. and VOGELSTEIN, J. T. (2021). Inference for multiple heterogeneous networks with a common invariant subspace. J. Mach. Learn. Res. 22 Paper No. 142, 49. · Zbl 07415085
[3] Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286 509-512. · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[4] BOGART, E., CRESWELL, R. and GERBER, G. K. (2019). MITRE: Inferring features from microbiota time-series data linked to host status. Genome Biol. 20 1-15.
[5] BORGWARDT, K. M., ONG, C. S., SCHÖNAUER, S., VISHWANATHAN, S. V. N., SMOLA, A. J. and KRIEGEL, H.-P. (2005). Protein function prediction via graph kernels. Bioinformatics 21 i47-i56. · doi:10.1093/bioinformatics/bti1007
[6] Cornea, E., Zhu, H., Kim, P. and Ibrahim, J. G. (2017). Regression models on Riemannian symmetric spaces. J. R. Stat. Soc. Ser. B. Stat. Methodol. 79 463-482. · Zbl 1414.62177 · doi:10.1111/rssb.12169
[7] Dai, X. and Müller, H.-G. (2018). Principal component analysis for functional data on Riemannian manifolds and spheres. Ann. Statist. 46 3334-3361. · Zbl 1454.62553 · doi:10.1214/17-AOS1660
[8] De Iorio, M., Johnson, W. O., Müller, P. and Rosner, G. L. (2009). Bayesian nonparametric nonproportional hazards survival modeling. Biometrics 65 762-771. · Zbl 1172.62073 · doi:10.1111/j.1541-0420.2008.01166.x
[9] DIGIULIO, D. B., CALLAHAN, B. J., MCMURDIE, P. J., COSTELLO, E. K., LYELL, D. J., ROBACZEWSKA, A., SUN, C. L., GOLTSMAN, D. S., WONG, R. J. et al. (2015). Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl. Acad. Sci. USA 112 11060-11065.
[10] DONNAT, C. and HOLMES, S. (2018). Tracking network dynamics: A survey using graph distances. Ann. Appl. Stat. 12 971-1012. · Zbl 1405.62171 · doi:10.1214/18-AOAS1176
[11] DURANTE, D., DUNSON, D. B. and VOGELSTEIN, J. T. (2017). Nonparametric Bayes modeling of populations of networks. J. Amer. Statist. Assoc. 112 1516-1530. · doi:10.1080/01621459.2016.1219260
[12] FERNÁNDEZ, T., RIVERA, N. and TEH, Y. W. (2016). Gaussian processes for survival analysis. In Advances in Neural Information Processing Systems 5021-5029.
[13] FERNÁNDEZ, T. and TEH, Y. W. (2016). Posterior consistency for a non-parametric survival model under a Gaussian process prior. Preprint. Available at arXiv:1611.02335.
[14] FRIEDMAN, J. and ALM, E. J. (2012). Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8 e1002687. · doi:10.1371/journal.pcbi.1002687
[15] GÄRTNER, T., DRIESSENS, K. and RAMON, J. (2003). Graph kernels and Gaussian processes for relational reinforcement learning. In International Conference on Inductive Logic Programming 146-163. Springer. · Zbl 1263.68131
[16] GHOSAL, S. and ROY, A. (2006). Posterior consistency of Gaussian process prior for nonparametric binary regression. Ann. Statist. 34 2413-2429. · Zbl 1106.62039 · doi:10.1214/009053606000000795
[17] GINESTET, C. E., LI, J., BALACHANDRAN, P., ROSENBERG, S. and KOLACZYK, E. D. (2017). Hypothesis testing for network data in functional neuroimaging. Ann. Appl. Stat. 11 725-750. · Zbl 1391.62217 · doi:10.1214/16-AOAS1015
[18] GOLLINI, I. and MURPHY, T. B. (2016). Joint modeling of multiple network views. J. Comput. Graph. Statist. 25 246-265. · doi:10.1080/10618600.2014.978006
[19] HSU, C.-W., CHANG, C.-C., LIN, C.-J. et al. (2003). A practical guide to support vector classification.
[20] JAIN, B. J. (2016). On the geometry of graph spaces. Discrete Appl. Math. 214 126-144. · Zbl 1346.05046 · doi:10.1016/j.dam.2016.06.027
[21] JAYASUMANA, S., HARTLEY, R., SALZMANN, M., LI, H. and HARANDI, M. (2013). Kernel methods on the Riemannian manifold of symmetric positive definite matrices. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on 73-80. IEEE Press, New York.
[22] JOSEPHS, N., LIN, L., ROSENBERG, S. and KOLACZYK, E. D. (2023). Supplement to “Bayesian classification, anomaly detection, and survival analysis using network inputs with application to the microbiome.” https://doi.org/10.1214/22-AOAS1623SUPPA, https://doi.org/10.1214/22-AOAS1623SUPPB
[23] KASHIMA, H. and INOKUCHI, A. (2002). Kernels for graph classification. In ICDM Workshop on Active Mining 2002.
[24] KEMMLER, M., RODNER, E., WACKER, E.-S. and DENZLER, J. (2013). One-class classification with Gaussian processes. Pattern Recognit. 46 3507-3518.
[25] KHAN, S. S. and MADDEN, M. G. (2009). A survey of recent trends in one class classification. In Irish Conference on Artificial Intelligence and Cognitive Science 188-197. Springer, Berlin.
[26] KIM, M. and PAVLOVIC, V. (2018). Variational inference for Gaussian process models for survival analysis. In UAI 435-445.
[27] Kolaczyk, E. D. and Csárdi, G. (2014). Statistical Analysis of Network Data with R. Use R! Springer, New York. · Zbl 1290.62002 · doi:10.1007/978-1-4939-0983-4
[28] KOLACZYK, E. D., LIN, L., ROSENBERG, S., WALTERS, J. and XU, J. (2020). Averages of unlabeled networks: Geometric characterization and asymptotic behavior. Ann. Statist. 48 514-538. · Zbl 1439.62068 · doi:10.1214/19-AOS1820
[29] KONDOR, R. I. and LAFFERTY, J. (2002). Diffusion kernels on graphs and other discrete structures. In Proceedings of the 19th International Conference on Machine Learning 2002 315-322.
[30] KRIEGE, N. M., JOHANSSON, F. D. and MORRIS, C. (2020). A survey on graph kernels. Appl. Netw. Sci. 5 1-42.
[31] KUNEGIS, J., SCHMIDT, S., LOMMATZSCH, A., LERNER, J., DE LUCA, E. W. and ALBAYRAK, S. (2010). Spectral analysis of signed graphs for clustering, prediction and visualization. In Proceedings of the 2010 SIAM International Conference on Data Mining 559-570. SIAM, Philadelphia.
[32] Layeghifard, M., Hwang, D. M. and Guttman, D. S. (2017). Disentangling interactions in the microbiome: A network perspective. Trends Microbiol. 25 217-228.
[33] LUNAGÓMEZ, S., OLHEDE, S. C. and WOLFE, P. J. (2021). Modeling network populations via graph distances. J. Amer. Statist. Assoc. 116 2023-2040. · Zbl 1524.62123 · doi:10.1080/01621459.2020.1763803
[34] MCNEISH, D. (2016). On using Bayesian methods to address small sample problems. Struct. Equ. Model. 23 750-773. · doi:10.1080/10705511.2016.1186549
[35] MUKHERJEE, S. S., SARKAR, P. and LIN, L. (2017). On clustering network-valued data. In Advances in Neural Information Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan and R. Garnett, eds.) 30 7071-7081.
[36] MURRAY, I. and ADAMS, R. P. (2010). Slice sampling covariance hyperparameters of latent Gaussian models. In Advances in Neural Information Processing Systems 1732-1740.
[37] MURRAY, I., ADAMS, R. P. and MACKAY, D. J. (2010). Elliptical slice sampling.
[38] MYGDALIS, V., IOSIFIDIS, A., TEFAS, A. and PITAS, I. (2016). Graph embedded one-class classifiers for media data classification. Pattern Recognit. 60 585-595.
[39] NIKOLENTZOS, G., SIGLIDIS, I. and VAZIRGIANNIS, M. (2021). Graph kernels: A survey. J. Artificial Intelligence Res. 72 943-1027. · Zbl 1522.68477
[40] OKSANEN, J. (2013). Vegan: Ecological diversity. R Project 368.
[41] PEDARSANI, P. and GROSSGLAUSER, M. (2011). On the privacy of anonymized networks. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 1235-1243.
[42] Rahimi, A. and Recht, B. (2008). Random features for large-scale kernel machines. In Advances in Neural Information Processing Systems 1177-1184.
[43] RALAIVOLA, L., SWAMIDASS, S. J., SAIGO, H. and BALDI, P. (2005). Graph kernels for chemical informatics. Neural Netw. 18 1093-1110.
[44] RAMON, E., BELANCHE-MUÑOZ, L., MOLIST, F., QUINTANILLA, R., PEREZ-ENCISO, M. and RAMAYO-CALDAS, Y. (2021). KernInt: A kernel framework for integrating supervised and unsupervised analyses in spatio-temporal metagenomic datasets. Front. Microbiol. 12 60.
[45] Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA. · Zbl 1177.68165
[46] RUDD, J. M. (2018). Application of support vector machine modeling and graph theory metrics for disease classification. Model Assist. Stat. Appl. 13 341-349.
[47] SALTER-TOWNSHEND, M. and MCCORMICK, T. H. (2017). Latent space models for multiview network data. Ann. Appl. Stat. 11 1217-1244. · Zbl 1380.62269 · doi:10.1214/16-AOAS955
[48] TANG, R., KETCHA, M., BADEA, A., CALABRESE, E. D., MARGULIES, D. S., VOGELSTEIN, J. T., PRIEBE, C. E. and SUSSMAN, D. L. (2018). Connectome smoothing via low-rank approximations. IEEE Trans. Med. Imag. 38 1446-1456.
[49] VISHWANATHAN, S. V. N., SCHRAUDOLPH, N. N., KONDOR, R. and BORGWARDT, K. M. (2010). Graph kernels. J. Mach. Learn. Res. 11 1201-1242. · Zbl 1242.05112 · doi:10.1093/chemse/bjq147
[50] WATTS, D. J. and STROGATZ, S. H. (1998). Collective dynamics of ‘small-world’networks. Nature 393 440-442. · Zbl 1368.05139
[51] WILLS, P. and MEYER, F. G. (2020). Metrics for graph comparison: A practitioner’s guide. PLoS ONE 15 e0228728. · doi:10.1371/journal.pone.0228728
[52] ZHANG, W., OTA, T., SHRIDHAR, V., CHIEN, J., WU, B. and KUANG, R. (2013). Network-based survival analysis reveals subnetwork signatures for predicting outcomes of ovarian cancer treatment. PLoS Comput. Biol. 9 e1002975
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.