×

The first-passage area of Wiener process with stochastic resetting. (English) Zbl 07826461

The article considers a scalar brownian motion reset to a fixed state at a specified rate. Using Laplace transform techniques, individual and joint moments of its first passage time through zero and area under its trajectory till the first passage time are computed, and the distribution function of its maximum displacement is derived. The results are then extended to a brownian motion with constant drift and reset.

MSC:

60J65 Brownian motion
60K99 Special processes

References:

[1] Abramowitz, M.; Stegun, IA, Handbook of mathematical functions: With formulas, graphs, and mathematical tables (1965), New York: Dover, New York
[2] Abundo, M., On the first-passage area of a one-dimensional jump-diffusion process, Methodol Comput Appl Probab, 15, 85-103 (2013) · Zbl 1267.60089 · doi:10.1007/s11009-011-9223-1
[3] Abundo, M., The first-passage area of Ornstein-Uhlenbeck process revisited, Stoch Anal Appl, 41, 2, 358-376 (2023) · Zbl 1518.60071 · doi:10.1080/07362994.2021.2018335
[4] Abundo, M.; Furia, S., Joint distribution of first-passage time and first-passage area of certain Lèvy processes, Methodol Comput Appl Probab, 21, 1283-1302 (2019) · Zbl 1437.60027 · doi:10.1007/s11009-018-9677-5
[5] Abundo, M.; Del Vescovo, D., On the joint distribution of first-passage time and first-passage area of drifted Brownian motion, Methodol Comput Appl Probab, 19, 985-996 (2017) · Zbl 1390.60292 · doi:10.1007/s11009-017-9546-7
[6] Ben-Ari, I., Principal eigenvalue for Brownian motion on a bounded interval with degenerate instantaneous jumps, Electron J Probab, 17, 87, 1-13 (2012) · Zbl 1256.35033 · doi:10.1214/EJP.v17-1791
[7] Borodin AN, Salminen S (1996) Handbook of Brownian motion-facts and formulae. Birkhauser VerlagBasel, Basel · Zbl 0859.60001
[8] Darling, DA; Siegert, AJF, The first passage problem for a continuous Markov process, Ann Math Stat, 24, 624-639 (1953) · Zbl 0053.27301 · doi:10.1214/aoms/1177728918
[9] den Hollander, F.; Majumdar, SN; Meylahn, JM; Touchette, H., Properties of additive functionals of Brownian motion with resetting, J Phys A: Math Theor, 52, 1-24 (2019) · Zbl 1509.60142 · doi:10.1088/1751-8121/ab0efd
[10] Dhar, D.; Ramaswamy, R., Exactly solved model of self-organized critical phenomena, Phys Rev Lett, 63, 16, 1659-1662 (1989) · doi:10.1103/PhysRevLett.63.1659
[11] Di Bello C, Hartmann AK, Majumdar SN Mori F, Rosso A, Schehr G (2023) Current fluctuations in stochastically resetting particle systems. Preprint at http://arxiv.org/abs/2302.06696
[12] Di Crescenzo, A.; Giorno, V.; Nobile, AG, On the M/M/1 queue with catastrophes and its continuous approximation, Queue Syst, 43, 329-347 (2003) · Zbl 1016.60080 · doi:10.1023/A:1023261830362
[13] Dubey, A.; Pal, A., First-passage functionals for Ornstein Uhlenbeck process with stochastic resetting, J Phys A: Math Theor, 56, 1-19 (2023) · Zbl 07753594 · doi:10.1088/1751-8121/acf748
[14] Evans, MR; Majumdar, SN, Diffusion with stochastic resetting, Phys Rev Lett, 106 (2011) · doi:10.1103/PhysRevLett.106.160601
[15] Evans, MR; Majumdar, SN; Schehr, G., Stochastic resetting and applications, J Phys A: Math Theor, 53, 1-67 (2020) · Zbl 1514.82157 · doi:10.1088/1751-8121/ab7cfe
[16] Guo W, Yan H, Chen H (2023) Extremal statistics for a resetting Brownian motion before its first-passage time. Preprint at http://arxiv.org/abs/2306.15929
[17] Kearney MJ, Pye AJ, Martin RJ (2014) On correlations between certain random variables associated with first passage Brownian motion. J Phys A: Math Theor 47(22):1-11, 225002. doi:10.1088/1751-8113/47/22/225002 · Zbl 1301.60097
[18] Kearney, MJ, On a random area variable arising in discrete-time queues and compact directed percolation, J Phys A: Math Gen, 37, 35, 8421-8431 (2004) · Zbl 1067.82029 · doi:10.1088/0305-4470/37/35/002
[19] Kearney, MJ; Majumdar, SN, On the area under a continuous time Brownian motion till its first-passage time, J Phys A: Math Gen, 38, 4097-4104 (2005) · Zbl 1086.82016 · doi:10.1088/0305-4470/38/19/004
[20] Klebaner, FC, Introduction to stochastic calculus with applications (2006), London: Imperial College Press, London
[21] Kundu A, Shlomi S (ed) (2022) Stochastic resetting: Theory and applications. Special issue. J Phys A: Math Theor 55(46)
[22] Majumdar SN, Kearney MJ (2007) Inelastic collapse of a ball bouncing on a randomly vibrating platform. Phys Rev E 76(3):1-8, 031130
[23] Majumdar SN (2007) Brownian functionals in physics and computer science. In: The Legacy Of Albert Einstein: a Collection of Essays in Celebration of the Year of Physics. World Scientific. pp 93-129 · Zbl 1113.01001
[24] Majumdar, SN; Meerson, B., Statistics of first-passage Brownian functionals, J Stat Mech: Theor Exp, 2, 1-29 (2020) · Zbl 1459.60170 · doi:10.1088/1742-5468/ab6844
[25] Nobile, AG; Ricciardi, LM; Sacerdote, L., Exponential trends of Ornstein-Uhlenbeck first-passage-time densities, J Appl Prob, 22, 360-369 (1985) · Zbl 0564.60076 · doi:10.2307/3213779
[26] Pal A, Chatterjee R, Reuveni S, Kundu A (2019) Local time of diffusion with stochastic resetting. J Phys A: Math Theor 52(26):1-31, 264002 · Zbl 1509.60151
[27] Pinsky RG (2023) Large time probability of failure in diffusive search with resetting for a random target in \(R^d-\) a functional analytic approach. Trans Am Math Soc 376(4) · Zbl 1514.60089
[28] Pinsky, RG, Diffusive search with spatially dependent resetting, Stoch Process Appl, 130, 5, 2954-2973 (2020) · Zbl 1434.60219 · doi:10.1016/j.spa.2019.08.008
[29] Prellberg, T.; Brak, R., Critical exponents from nonlinear functional equations for partially directed cluster models, J Stat Phys, 78, 3, 701-730 (1995) · Zbl 1102.82316 · doi:10.1007/BF02183685
[30] Singh, P.; Pal, A., First-passage Brownian functionals with stochastic resetting, J Phys A: Math Theor, 55, 1-25 (2022) · Zbl 1507.60105 · doi:10.1088/1751-8121/ac677c
[31] Tal-Friedman O, Roichman Y, Reuveni S (2022) Diffusion with partial resetting. Phys Rev E 106(2022):1-13, 054116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.