×

Geometry, topology and simplicial synchronization. (English) Zbl 1505.93248

Battiston, Federico (ed.) et al., Higher-order systems. Cham: Springer. Underst. Complex Syst., 269-299 (2022).
Summary: Simplicial synchronization reveals the role that topology and geometry have in determining the dynamical properties of simplicial complexes. Simplicial network geometry and topology are naturally encoded in the spectral properties of the graph Laplacian and of the higher-order Laplacians of simplicial complexes. Here we show how the geometry of simplicial complexes induces spectral dimensions of the simplicial complex Laplacians that are responsible for changing the phase diagram of the Kuramoto model. In particular, simplicial complexes displaying a non-trivial simplicial network geometry cannot sustain a synchronized state in the infinite network limit if their spectral dimension is smaller or equal to four. This theoretical result is here verified on the network geometry with flavor simplicial complex generative model displaying emergent hyperbolic geometry. On its turn simplicial topology is shown to determine the dynamical properties of the higher-order Kuramoto model. The higher-order Kuramoto model describes synchronization of topological signals, i.e., phases not only associated to the nodes of a simplicial complexes but associated also to higher-order simplices, including links, triangles and so on. This model displays discontinuous synchronization transitions when topological signals of different dimension and/or their solenoidal and irrotational projections are coupled in an adaptive way.
For the entire collection see [Zbl 1495.93003].

MSC:

93D99 Stability of control systems
93B70 Networked control
93B24 Topological methods
55U10 Simplicial sets and complexes in algebraic topology

References:

[1] A.L. Barabási, Network Science (Cambridge University Press, 2016) · Zbl 1353.94001
[2] S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Critical phenomena in complex networks. Rev. Mod. Phys. 80(4), 1275 (2008) · doi:10.1103/RevModPhys.80.1275
[3] A. Barrat, M. Barthelemy, A. Vespignani. Dynamical Processes on Complex Networks. (Cambridge University Press, 2008) · Zbl 1198.90005
[4] F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A. Patania, J.-G. Young, G. Petri, Networks beyond pairwise interactions: structure and dynamics (Phys, Rep, 2020) · Zbl 1472.05143
[5] G. Bianconi, Higher-Order Networks: An Introduction to Simplicial Complexes. (Cambridge University Press, 2021) · Zbl 1494.82002
[6] G. Bianconi, Interdisciplinary and physics challenges of network theory. EPL (Europhys. Lett.) 111(5), 56001 (2015)
[7] L. Torres, A.S. Blevins, D.S. Bassett, T. Eliassi-Rad, The why, how, and when of representations for complex systems. ArXiv preprint arXiv:2006.02870 (2020) · Zbl 1470.00003
[8] S.H. Strogatz, From kuramoto to crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D: Nonlinear Phenomena 143(1-4), 1-20 (2000) · Zbl 0956.00057 · doi:10.1016/S0167-2789(00)00094-4
[9] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Synchronization in complex networks. Phys. Rep. 469(3), 93-153 (2008) · doi:10.1016/j.physrep.2008.09.002
[10] S. Boccaletti, A.N Pisarchik, C.I. Del Genio, A. Amann, Synchronization: From Coupled Systems to Complex Networks (Cambridge University Press, 2018) · Zbl 1380.90001
[11] Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in International Symposium on Mathematical Problems in Theoretical Physics. ed. by H. Araki (Springer, Berlin Heidelberg, Berlin, Heidelberg, 1975), pp. 420-422 · Zbl 0335.34021 · doi:10.1007/BFb0013365
[12] A.P. Millán, J.J. Torres, G. Bianconi, Explosive higher-order kuramoto dynamics on simplicial complexes. Phys. Rev. Lett. 124(21), 218301 (2020) · doi:10.1103/PhysRevLett.124.218301
[13] J.J. Torres, G. Bianconi, Simplicial complexes: higher-order spectral dimension and dynamics. J. Phys.: Complex. 1(1), 015002 (2020)
[14] S. Barbarossa, S. Sardellitti, Topological signal processing over simplicial complexes. IEEE Trans. Sig. Process. 68, 2992-3007 (2020) · Zbl 07590943 · doi:10.1109/TSP.2020.2981920
[15] O.T. Courtney, G. Bianconi, Generalized network structures: the configuration model and the canonical ensemble of simplicial complexes. Phys. Rev. E 93(6), 062311 (2016) · doi:10.1103/PhysRevE.93.062311
[16] G. Bianconi, C. Rahmede, Network geometry with flavor: from complexity to quantum geometry. Phys. Rev. E 93(3), 032315 (2016) · doi:10.1103/PhysRevE.93.032315
[17] G. Bianconi, C. Rahmede, Emergent hyperbolic network geometry. Sci. Rep. 7, 41974 (2017)
[18] D. Mulder, G. Bianconi, Network geometry and complexity. J. Stat. Phys. 173(3-4), 783-805 (2018) · Zbl 1476.90072 · doi:10.1007/s10955-018-2115-9
[19] O.T. Courtney, G. Bianconi, Weighted growing simplicial complexes. Phys. Rev. E 95(6), 062301 (2017) · doi:10.1103/PhysRevE.95.062301
[20] P.S. Skardal, A. Arenas, Abrupt desynchronization and extensive multistability in globally coupled oscillator simplexes. Physical review letters 122(24), 248301 (2019) · doi:10.1103/PhysRevLett.122.248301
[21] P.S. Skardal, A. Arenas, Higher-order interactions in complex networks of phase oscillators promote abrupt synchronization switching. arXiv preprint arXiv:1909.08057 (2019)
[22] P.S. Skardal, A. Arenas, Memory selection and information switching in oscillator networks with higher-order interactions. J. Phys.: Compl. (2020)
[23] Repository for higher-order network codes
[24] M. Gromov, Hyperbolic groups, in Essays in Group Theory. (Springer, 1987), pp. 75-263 · Zbl 0634.20015
[25] A.P. Millán, R. Ghorbanchian, N. Defenu, F. Battiston, G. Bianconi, Local topological moves determine global diffusion properties of hyperbolic higher-order networks. Phys. Rev. E 104, 054302 (2021)
[26] R. Burioni, D. Cassi, Random walks on graphs: ideas, techniques and results. J. Phys. A: Math General 38(8), R45 (2005) · Zbl 1076.82023 · doi:10.1088/0305-4470/38/8/R01
[27] G. Rammal, Toulouse, Random walks on fractal structures and percolation clusters. J. de Phys. Lett. 44(1), 13-22 (1983)
[28] R. Burioni, D. Cassi, Universal properties of spectral dimension. P. Rev. Lett. 76(7), 1091 (1996) · doi:10.1103/PhysRevLett.76.1091
[29] Z. Wu, G. Menichetti, C. Rahmede, G. Bianconi, Emergent complex network geometry. Sci. Rep. 5, 10073 (2015) · doi:10.1038/srep10073
[30] A.P. Millán, G. Gori, F. Battiston, T. Enss, N. Defenu, Complex networks with tuneable dimensions as a universality playground. Phys. Rev. Res. 3, 023015 (2021)
[31] M.M. Dankulov, B. Tadić, R. Melnik, Spectral properties of hyperbolic nanonetworks with tunable aggregation of simplexes. Phys. Rev. E 100(1), 012309 (2019) · doi:10.1103/PhysRevE.100.012309
[32] A.P. Millán, J.J. Torres, G. Bianconi, Synchronization in network geometries with finite spectral dimension. Phys. Rev. E 99(2), 022307 (2019) · doi:10.1103/PhysRevE.99.022307
[33] A.P. Millán, J.J. Torres, G. Bianconi, Complex network geometry and frustrated synchronization. Sci. Rep. 8(9910) (2018)
[34] A. Muhammad, M. Egerstedt, Control using higher order laplacians in network topologies, in Proceeding of 17th International Symposium on Mathematical Theory of Networks and Systems (Citeseer, 2006), pp. 1024-1038
[35] T.E. Goldberg, Combinatorial laplacians of simplicial complexes. Senior Thesis, Bard College (2002)
[36] J.J. Torres, J. Marro, Brain performance versus phase transitions. Sci. Rep. 5, 12216 (2015) · doi:10.1038/srep12216
[37] M. Reitz, G. Bianconi, The higher-order spectrum of simplicial complexes: a renormalization group approach. J. Phys. A: Math. Theor. (2020) · Zbl 1519.82042
[38] J.A. Acebrón, L.L. Bonilla, C.J. Pérez Vicente, F. Ritort, R. Spigler, The kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77(1), 137 (2005)
[39] J.G. Restrepo, E. Ott, B.R. Hunt, Onset of synchronization in large networks of coupled oscillators. Phys. Rev. E 71(3), 036151 (2005) · Zbl 1144.37402 · doi:10.1103/PhysRevE.71.036151
[40] M. Chavez, D.-U. Hwang, A. Amann, H.G.E. Hentschel, S. Boccaletti, Synchronization is enhanced in weighted complex networks. Phys. Rev. Lett. 94(21), 218701 (2005) · doi:10.1103/PhysRevLett.94.218701
[41] W. Huang, T.A.W. Bolton, J.D. Medaglia, D.S. Bassett, A. Ribeiro, D. Van De Ville, A graph signal processing perspective on functional brain imaging. Proc. IEEE 106(5), 868-885 (2018) · doi:10.1109/JPROC.2018.2798928
[42] M. Ruiz-Garcia, E. Katifori, Topologically controlled emergent dynamics in flow networks. arXiv preprint arXiv:2001.01811 (2020)
[43] H. Hong, H. Park, M.Y. Choi, Collective synchronization in spatially extended systems of coupled oscillators with random frequencies. Phys. Rev. E 72(3), 036217 (2005) · doi:10.1103/PhysRevE.72.036217
[44] H. Hong, H. Chaté, H. Park, L.H. Tang, Entrainment transition in populations of random frequency oscillators. Phys. Rev. Lett. 99(18), 184101 (2007) · doi:10.1103/PhysRevLett.99.184101
[45] P. Moretti, M.A. Muñoz, Griffiths phases and the stretching of criticality in brain networks. Nat. Commun. 4, 2521 (2013) · doi:10.1038/ncomms3521
[46] P. Villegas, P. Moretti, M.A. Muñoz, Frustrated hierarchical synchronization and emergent complexity in the human connectome network. Sci. Rep. 4, 5990 (2014) · doi:10.1038/srep05990
[47] R. Ghorbanchian, J.G. Restrepo, J.J. Torres, G. Bianconi, Higher-order simplicial synchronization of coupled topological signals. Commun. Phys. 4, 1-13 (2021)
[48] J.W. Rocks, A.J. Liu, E. Katifori, Revealing structure-function relationships in functional flow networks via persistent homology. Phys. Rev. Res. 2(3), 033234 (2020) · doi:10.1103/PhysRevResearch.2.033234
[49] X. Zhang, S. Boccaletti, S. Guan, Z. Liu, Explosive synchronization in adaptive and multilayer networks. Phys. Rev. Lett. 114(3), 038701 (2015) · doi:10.1103/PhysRevLett.114.038701
[50] L.R. Varshney, B.L. Chen, E. Paniagua, D.H. Hall, D.B. Chklovskii, Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput. Biol. 7(2), e1001066 (2011)
[51] L. DeVille, Consensus on simplicial complexes, or: the nonlinear simplicial Laplacian. arXiv preprint arXiv:2010.07421 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.