×

On the small time asymptotics of diffusion processes on Hilbert spaces. (English) Zbl 1044.60071

Summary: We establish a small time large deviation principle and obtain the following small time asymptotics: \[ \lim_{t\to 0}2t\log P(X_0 \in B,\;X_t\in C)= -d^2(B,C), \] for diffusion processes on Hilbert spaces, where \(d(B,C)\) is the intrinsic metric between two subsets \(B\) and \(C\) associated with the diffusions. The case of perturbed Ornstein-Uhlenbeck processes is treated separately at the end of the paper.

MSC:

60J60 Diffusion processes
46N30 Applications of functional analysis in probability theory and statistics
31C25 Dirichlet forms
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60F10 Large deviations
Full Text: DOI

References:

[1] Aida, S. and Kawabi, X. (1999). Short time asymptotics of certain infinite dimensional diffusion processes. · Zbl 0976.60077
[2] Aida, S. and Shigekawa, I. (1994). Logarithmic Sobolev inequalities and spectral gaps: perturbation theory. J.Funct.Anal.448-475. · Zbl 0846.46019 · doi:10.1006/jfan.1994.1154
[3] Albeverio, S. and R öckner, M. (1991). Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms. Probab.Theory Related Fields 89 347-386. · Zbl 0725.60055 · doi:10.1007/BF01198791
[4] Albeverio, S., R öckner, M. and Zhang, T. S. (1993). Girsanov transform for symmetric diffusions with infinite dimensional state space. Ann.Probab.21 961-978. · Zbl 0776.60093 · doi:10.1214/aop/1176989277
[5] Bogachev, V. I. and R öckner, M. (1999). Mehler formula and capacities for infinite dimensional Ornstein-Uhlenbeck processes with general linear drift. Osaka Math.J. · Zbl 0849.60004
[6] Chow, P. L. and Menaldi, J. L. (1990). Exponential estimates in exit probabilityfor some diffusion processes in Hilbert spaces, Stochastics Stochastics Rep. 29 377-393. · Zbl 0699.60047
[7] Da Prato, G. and Zabczyk, J. (1992). Stochastic Equations in Infinite Dimensions. Cambridge Univ. Press. · Zbl 0761.60052 · doi:10.1017/CBO9780511666223
[8] Davies, E. B. (1989). Heat Kernels and Spectral Theory. Cambridge Univ. Press. · Zbl 0699.35006
[9] Dembo, A. and Zeitouni, O. (1993). Large Deviations Techniques. Jones and Bartlett, Boston. · Zbl 0793.60030
[10] Fang, S. (1994). On the Ornstein-Uhlenbeck process. Stochastics Stochastics Rep. 46 141-159. · Zbl 0826.60067
[11] Fang, S. and Zhang, T. S. (1997). On the small time behavior of Ornstein-Uhlenbeck processes with unbounded linear drifts. Preprint. Probab.Theory Related Fields. · Zbl 0932.60071 · doi:10.1007/s004400050232
[12] Fukushima, M. Oshima, Y. and Takeda, M. (1994). Dirichlet Forms and Symmetric Markov Processes. de Gruyter, Berlin. · Zbl 0838.31001
[13] Iscoe, I. and McDonald D. (1989). Large deviations for l2-valued Ornstein-Uhlenbeck processes. Ann.Probab.17 58-73. · Zbl 0716.60060 · doi:10.1214/aop/1176991494
[14] Kuo, H. H. (1977). Gaussian Measures in Banach Spaces. Lecture Notes in Math. Springer, Berlin. · Zbl 0306.28010 · doi:10.1007/BFb0082007
[15] Lyons, T. J. and Zhang, T. S. (1994). Decomposition of Dirichlet processes and its applications. Ann.Probab.22 494-524. · Zbl 0804.60044 · doi:10.1214/aop/1176988870
[16] Lyons, T. J. and Zheng, W. A. (1988). A crossing estimate for the canonical process on a Dirichlet space and tightness result. Colloque Paul Lévysur les processes stochastique. Asterisque 157-158 248-272. · Zbl 0654.60059
[17] Ma,M. and R öckner, M. (1992). An Introduction to the Theory of (Non-symmetric) Dirichlet Forms. Springer, Berlin. · Zbl 0826.31001
[18] Pardoux, E. (1979). Stochastic partial differential equations and filtering of diffusion processes. Stochastics 3 127-167. · Zbl 0424.60067 · doi:10.1080/17442507908833142
[19] R öckner, M. and Zhang, T. S. (1992). Uniqueness of generalized Schrödinger operators and applications. J.Funct.Anal.105 187-231. · Zbl 0779.35028 · doi:10.1016/0022-1236(92)90078-W
[20] R öckner, M. and Zhang, T. S. (1994). Uniqueness of generalized Schrödinger operators II. J.Funct.Anal.119 455-467. · Zbl 0799.35053 · doi:10.1006/jfan.1994.1017
[21] Stroock, D. (1984). An Introduction to the Theory of Large Deviations. Springer, Berlin. · Zbl 0552.60022
[22] Takeda, M. (1989). On a martingale method for symmetric diffusion processes and its applications. Osaka J.Math.26 605-625. · Zbl 0717.60090
[23] Tessitore, G. and Zabczyk, J. (1998). Strict positivityfor stochastic heat equations. Stochastic Process.Appl.77 83-98. · Zbl 0933.60071 · doi:10.1016/S0304-4149(98)00024-6
[24] Varadhan, S. R. S. (1967). Diffusion processes in small time intervals. Comm.Pure Appl. Math. 20 659-685. · Zbl 0278.60051 · doi:10.1002/cpa.3160200404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.