×

On a class of mixed stochastic heat equations driven by spatially homogeneous Gaussian noise. (English) Zbl 1515.60242

Summary: In this paper, we study a class of nonlinear stochastic heat equations \(\frac{\partial}{\partial t}u(t,x)=(\Delta+a^\alpha\Delta^{\frac{\alpha}{2}}+b\cdot\nabla)u(t,x)+\sigma(u(t,x))\dot{W}(t,x),\) where \(\dot{W}\) denotes the Gaussian noise which is white in time and spatially homogeneous in space. The existence, uniqueness and the Hölder continuity of the mild solution to the above equation are proved.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H07 Stochastic calculus of variations and the Malliavin calculus
60H30 Applications of stochastic analysis (to PDEs, etc.)
60G22 Fractional processes, including fractional Brownian motion
Full Text: DOI

References:

[1] Balan, R. M.; Conus, D., Intermittency for the wave and heat equations with fractional noise in time, Ann. Probab., 44, 2, 1488-1534 (2015) · Zbl 1343.60081
[2] Balan, R. M.; Tudor, C. A., The stochastic heat equation with fractional-colored noise: existence of the solution, Lat. Am. J. Probab. Math. Stat.. Lat. Am. J. Probab. Math. Stat., Lat. Am. J. Probab. Math. Stat., 6, 343-347-87 (2009), (erratum) · Zbl 1276.60064
[3] Balan, R. M.; Tudor, C. A., Stochastic heat equation with multiplicative fractional-colored noise, J. Theor. Probab., 23, 834-870 (2010) · Zbl 1203.60078
[4] Chen, L.; Dalang, R. C., Hölder-continuity for the nonlinear stochastic heat equation with rough initial conditions, Stoch. Partial Differential Equations: Anal. Comput., 2, 3, 316-352 (2014) · Zbl 1306.60085
[5] Chen, Z.; Hu, E., Heat kernel estimates for \(\Delta + \Delta^{\frac{ \alpha}{ 2}}\) under gradient perturbation, Stoch. Process. Appl., 125, 7, 2603-2642 (2015) · Zbl 1329.60228
[6] Chen, Z.; Kim, P.; Song, R., Heat kernel estimates for \(\Delta + \Delta^{\frac{ \alpha}{ 2}}\) in \(C^{1 , 1}\) open sets, J. Lond. Math. Soc., 84, 58-80 (2011) · Zbl 1229.60089
[7] Dalang, R. C., Extending the martingale measure stochastic integml with applications to spatially homogeneous s.p.d.e’s, Electron. J. Probab., 4, 1-29 (1999) · Zbl 0922.60056
[8] Hu, Y.; F., Lu.; Nualart, D., Hölder continuity of the solution for a class of nonlinear SPDEs arising from one-dimensional superprocesses, Probab. Theory Relat. Fields, 156, 27-49 (2013) · Zbl 1391.60159
[9] Hu, Y.; Nualart, D.; Song, J., A nonlinear stochastic heat equation: Hölder continuity and smoothness of the density of the solution, Stoch. Process Appl., 123, 1083-1103 (2013) · Zbl 1272.60043
[10] Liu, J.; Yan, L., On a semilinear stochastic partial differential equation with double-parameter fractional noises, Sci. China Math., 57, 4, 855-872 (2014) · Zbl 1323.60086
[11] Liu, J.; Yan, L., Solving a nonlinear fractional stochastic partial differential equation with fractional noise, J. Theor. Probab., 29, 307-347 (2016) · Zbl 1335.60114
[12] Sanz-Solé, M., Sarrà, M., 1999. Hölder continuity for the stochastic heat equation with spatially correlated Noise. In: Seminar on Stochastic Analysis, RandOm Fields and Applications III. Ascona, pp. 259-268.
[13] Stein, E. M., Singular Integrals and Differentiability Properties of Functions (1970), Princeton University Press: Princeton University Press Princeton, New Jersey · Zbl 0207.13501
[14] Walsh, J. B., An introduction to stochastic partial differential equations, (école Dété de Probabilités de Saint Flour XIV. école Dété de Probabilités de Saint Flour XIV, Lecture Notes in Mathematics, vol. 1180 (1986), Springer: Springer Berlin) · Zbl 0608.60060
[15] Xia, D.; Yan, L., On a semilinear double fractional heat equation driven by fractional Brownian sheet, J. Appl. Anal. Comput., 8, 1, 202-228 (2018) · Zbl 1456.60163
[16] Zili, M.; Zougar, E., Mixed stochastic heat equation with fractional Laplacian and gradient perturbation, Fract. Calc. Appl. Anal., 25, 783-802 (2022) · Zbl 1503.60086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.