×

Spherical analysis attached to some \(m\)-step nilpotent Lie group. (English) Zbl 07860407

Summary: We introduce a family of generalized Gelfand pairs \((K_m, N_m)\) where \(N_m\) is an \(m+2\)-step nilpotent Lie group and \(K_m\) is isomorphic to the 3-dimensional Heisenberg group. We develop the associated spherical analysis computing the set of the spherical distributions and we obtain some results on the algebra of \(K_m\)-invariant and left invariant differential operators on \(N_m\).

MSC:

43A80 Analysis on other specific Lie groups
22E27 Representations of nilpotent and solvable Lie groups (special orbital integrals, non-type I representations, etc.)

Software:

OEIS
Full Text: DOI

References:

[1] Astengo, F.; Di Blasio, B.; Ricci, F., Gelfand transforms of polyradial functions on the Heisenberg group, J. Funct. Anal., 251, 772-791, 2007 · Zbl 1128.43009 · doi:10.1016/j.jfa.2007.06.010
[2] Benson, C.; Jenkins, J.; Ratcliff, G., On Gelfand pairs associated with solvable Lie groups, Trans. Am. Math. Soc., 321, 85-116, 1990 · Zbl 0704.22006
[3] Benson, C.; Jenkins, J.; Ratcliff, G., Bounded K-spherical function on Heisenberg group, J. Funct. Anal., 105, 409-443, 1992 · Zbl 0763.22007 · doi:10.1016/0022-1236(92)90083-U
[4] Benson, C.; Jenkins, J.; Ratcliff, G., The orbit method and Gelfand pairs associated with nilpotent Lie groups, J. Geom. Anal., 9, 569-582, 1999 · Zbl 0998.22002 · doi:10.1007/BF02921973
[5] Campos, S., García, J., Saal, L.: Generalized Gelfand pairs associated to \(m\)-step nilpotent Lie groups. J. Geom. Anal. 33, Article number: 54 (2023) · Zbl 1535.22024
[6] Deitmar, A.; Siegfried, E., Principles of Harmonic Analysis, 2009, New York: Universitext, Springer, New York · Zbl 1158.43001
[7] Faraut, J., Distributions sphériques sur les espaces hyperboliques, J. Math. Pures Appl., 58, 369-444, 1979 · Zbl 0436.43011
[8] Fischer,V., Ricci, F., Yakimova, O.: Nilpotent Gelfand pairs and spherical transforms of Schwartz functions III. Isomorphisms between Schwartz spaces under Vinberg condition. arXiv:1210.7962
[9] Gallo, A.; Saal, L., A generalized Gelfand pair attached to a \(3\)-step nilpotent Lie group, J. Fourier Anal. Appl., 26, 62, 2020 · Zbl 1440.43017 · doi:10.1007/s00041-020-09772-4
[10] Helgason, S., Groups and Geometric Analysis, 1984, New York: Academmic Press, New York · Zbl 0543.58001
[11] Kleppner, A., Lipsman, R.: The Plancherel formula for group extensions. Ann. Scient. Éc. Norm. Sup., 4ta série, t.5, n0 3, 459-516 (1972) · Zbl 0239.43003
[12] Kobayashi, T., Multiplicity free representations and visible actions on complex manifolds, Publ. RIMS Kyoto Univ., 41, 497-549, 2005 · Zbl 1085.22010 · doi:10.2977/prims/1145475221
[13] Lauret, J., Gelfand pairs attached to representations of compact Lie groups, Transform. Groups, 5, 307-324, 2000 · Zbl 0971.22006 · doi:10.1007/BF01234795
[14] Molcanov, V.F.: Analogue of the Plancherel formula for hyperboloids. Dokl. Akad. Nauk S.S.S.R. 183, 288-291 (1968) · Zbl 0176.44304
[15] Molcanov, VF, Analogue of the Plancherel formula for hyperboloids, Soviet Math. Dokl., 9, 1382-1385, 1968 · Zbl 0176.44304
[16] Mokni, K.; Thomas, EGF, Paires de Guelfand généralisées associées au groupe d’Heisenberg, J. Lie Theory, 8, 325-334, 1998 · Zbl 0908.43011
[17] Stein, E.; Weiss, G., Introduction to Fourier Analysis on Euclidean Space, 1971, Princeton: Princeton University Press, Princeton · Zbl 0232.42007
[18] The On-Line Encyclopedia of Integer Sequences. Sequence A001971
[19] Thomas, E.G.F.: The theorem of Bochner Schwartz Godement for generalized Gelfand pairs. In: Funct. Anal Surveys and Recent Results III. Elsevier (1984)
[20] Van Dijk, G., Group representations on spaces of distributions, Russ. J. Math. Phys., 2, 57-68, 1994 · Zbl 0919.43009
[21] Van Dijk, G., Introduction to Harmonic Analysis and Generalized Gelfand Pairs, Series De Gruyter Studies in Mathematics, 2009, Berlin: Walter de Gruyter and Co, Berlin · Zbl 1184.43001
[22] Vinberg, EB, Commutative homogeneous spaces and co-isotropic symplectic actions, Russ. Math., 56, 1-60, 2001 · Zbl 0996.53034 · doi:10.1070/RM2001v056n01ABEH000356
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.