×

Artin symbols over imaginary quadratic fields. (English) Zbl 07873050

This paper appears to be an expository one. For an imaginary quadratic field \(K\) and a positive integer \(N\), the author explicitly describes the action of the Artin symbol \(\bigg( \frac{K_N/K}{\mathfrak{p}} \bigg)\) (where \(K_N\) is the ray class field mod \(NO_K\) and \(\mathfrak{p}\) is a prime that is coprime to \(NO_K\)) on special values of modular forms of level \(N\). He also shows how to extend the Kronecker congruence relation for the \(j\)-function to certain modular functions of higher level.

MSC:

11R37 Class field theory
11E12 Quadratic forms over global rings and fields
11F03 Modular and automorphic functions
Full Text: DOI

References:

[1] W. W. Adams and L. J. Goldstein, Introduction to Number Theory, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976. · Zbl 0326.10001
[2] B. Cho, Modular equations for congruence subgroups of genus zero (II), J. Number Theory 231 (2022), 48-79. · Zbl 1475.11061
[3] D. A. Cox, Primes of the Form \(x^2 + ny^2\)-Fermat, Class field theory, and Complex Multiplication, 3rd ed. with solutions, with contributions by Roger Lipsett, AMS Chelsea Publishing, Providence, R.I., 2022. · Zbl 1504.11002
[4] F. Diamond and J. Shurman, A First Course in Modular Forms, Grad. Texts in Math. 228, Springer-Verlag, New York, 2005. · Zbl 1062.11022
[5] I. S. Eum, J. K. Koo and D. H. Shin, Binary quadratic forms and ray class groups, Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 2, 695-720. · Zbl 1447.11114 · doi:10.1017/prm.2018.163
[6] C. F. Gauss, Disquisitiones Arithmeticae, Leipzig, 1801.
[7] H. Hasse, Neue Begrundung der komplexen Multiplikation I, II, J. reine angew. Math. 157 (1927), 115-139, 165 (1931), 64-88. · JFM 57.0204.02
[8] G. J. Janusz, Algebraic Number Fields, 2nd ed., Grad. Studies in Math. 7, Amer. Math. Soc., Providence, R.I., 1996. · Zbl 0854.11001
[9] H. Y. Jung, J. K. Koo, D. H. Shin and D. S. Yoon, On some p-adic Galois representations and form class groups, Mathematika 68 (2022), no. 2, 535-564. · Zbl 1524.11204 · doi:10.1112/mtk.12141
[10] H. Y. Jung, J. K. Koo, D. H. Shin and D. S. Yoon, Arithmetic properties of orders in imaginary quadratic fields, https://arxiv.org/abs/2205.10754.
[11] S. Lang, Elliptic Functions, With an appendix by J. Tate, 2nd ed., Grad. Texts in Math. 112, Spinger-Verlag, New York, 1987. · Zbl 0615.14018
[12] J. Neukirch, Class Field Theory, Grundlehren der mathematischen Wissenschaften 280, Springer-Verlag, Berlin, 1986. · Zbl 0587.12001
[13] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton University Press, Princeton, N.J., 1971. · Zbl 0221.10029
[14] P. Stevenhagen, Hilbert’s 12th problem, complex multiplication and Shimura reciprocity, Class field theory-its centenary and prospect (Tokyo, 1998), 161-176, Adv. Stud. Pure Math. 30, Math. Soc. Japan, Tokyo, 2001. · Zbl 1097.11535
[15] H. Weber, Zur Theorie der Elliptischen Functionen, Acta Math. 6 (1885), no. 1, 329-416. · JFM 17.0456.01 · doi:10.1007/BF02400423
[16] D. S. Yoon, Ray class invariants in terms of extended form class groups, East Asian Math. J. 37 (2021), no. 1, 87-95. · Zbl 1473.11083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.