×

A multi-drug pharmacokinectic optimal control approach in cancer chemotherapy. (English) Zbl 1500.92042

Summary: The mathematical study of the growth and treatment of cancer has been of great interest to researchers in the recent past as that can help clinical practitioners in adopting new treatment strategies to fight effectively against cancer. Although chemotherapy is the most common method of cancer treatment, the drug-resistant nature of tumor cells and the toxic effect of chemotherapeutic drugs on normal cells are major threats to the success of chemotherapy. In this paper, we propose a multi-drug chemotherapy model combined with an optimal control approach in which the amount of drugs is taken as control functions. The underlying mathematical model discusses the evolution of a heterogeneous tumor population and the dynamics of normal cells under chemotherapy. The model incorporates the pharmacokinetics of the anticancer agents as well. The proposed optimal control approach ensures maximum decay of the tumor cells while preserving a sufficient level of normal cells that would help faster recovery.

MSC:

92C50 Medical applications (general)
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
49J15 Existence theories for optimal control problems involving ordinary differential equations
Full Text: DOI

References:

[1] de Pillis, LG, Seeking bang-bang solutions of mixed immuno-chemotherapy of tumors, Electr. J. Differ. Equ., 2017, 1-24 (2007) · Zbl 1133.92332
[2] de Pillis, LG; Gu, W.; Radunskaya, AE, Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations, J. Theor. Biol., 238, 841-62 (2006) · Zbl 1445.92135 · doi:10.1016/j.jtbi.2005.06.037
[3] de Pillis, LG; Radunskaya, AE, A mathematical tumor model with immune resistance and drug therapy: an optimal control approach, J. Theor. Med., 3, 79-100 (2001) · Zbl 0985.92023 · doi:10.1080/10273660108833067
[4] Feizabadi, MS, Modeling multi-mutation and drug resistance: analysis of some case studies, Theor. Biol. Med. Model., 14, 6 (2017) · doi:10.1186/s12976-017-0052-y
[5] Feizabadi, MS; Witten, TM, Chemotherapy in conjoint aging-tumor systems: some simple models for addressing coupled aging-cancer dynamics, Theor. Biol. Med. Model., 7, 21 (2010) · doi:10.1186/1742-4682-7-21
[6] Fister, KR; Donnelly, JH, Immunotherapy: an optimal control theory approach, Math. Biosci. Eng., 2, 499-510 (2005) · Zbl 1180.92038 · doi:10.3934/mbe.2005.2.499
[7] Fleming, WH; Rishel, RW, Deterministic and Stochastic Optimal Control (1975), New York: Springer, New York · Zbl 0323.49001 · doi:10.1007/978-1-4612-6380-7
[8] Greene, JM; Gevertz, JL; Sontag, ED, Mathematical approach to differentiate spontaneous and induced evolution to drug resistance during cancer treatment, JCO Clin. Cancer Inform., 3, 1-20 (2019) · doi:10.1200/CCI.18.00087
[9] Holohan, C.; Van Schaeybroeck, S.; Longley, DB; Johnston, PG, Cancer drug resistance: an evolving paradigm, Nat. Rev. Cancer, 13, 714-726 (2013) · doi:10.1038/nrc3599
[10] Kamien, MI; Schwartz, NL, Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management (1998), New York: North-Holland, New York · Zbl 0455.49002
[11] Ledzewicz, U.; Schattler, H., A 3-compartment model of heterogeneous tumor populations, Acta. Appl. Math., 135, 191-207 (2014) · Zbl 1326.92039 · doi:10.1007/s10440-014-9952-6
[12] Ledzewicz, U., Schattler. H.: Optimal bang-bang control for a two compartment model in cancer chemotherapy. J. Optim. Theory Appl. 114, 609-637 (2002) · Zbl 1035.49020
[13] Lenhart, S.; Workman, J., Optimal Control Applied to Biological Models (2007), Boca Raton: Chapman Hall/CRC, Boca Raton · Zbl 1291.92010 · doi:10.1201/9781420011418
[14] Maurer, H., On optimal control problems with bounded state variables and control appearing linearly, SIAM J. Control Optim., 15, 345-362 (1977) · Zbl 0358.49008 · doi:10.1137/0315023
[15] Maurer, H., do Rosario de Pinho, M.: Optimal control of epidemiological SEIR models with L1-objectives and control-state constraints. Pac. J. Optim. 12, 415-436 (2016) · Zbl 1341.49049
[16] Namazi, H.; Kulish, V.; Wong, A., Mathematical modelling and prediction of the effect of chemotherapy on cancer cells, Sci. Rep., 5, 13583 (2015) · doi:10.1038/srep13583
[17] Nanditha, C.K., Rajan, M.P.: An adaptive pharmacokinectic optimal control approach in chemotherapy for hetrogeneous tumor. J. Biol. Syst. (Accepted) (2022) · Zbl 1503.92042
[18] Piretto, E.; Delitala, M.; Ferraro, M., Combination therapies and intra-tumoral competition: insights from mathematical modeling, J. Theor. Biol., 446, 149-159 (2018) · Zbl 1397.92353 · doi:10.1016/j.jtbi.2018.03.014
[19] Pluchino, KM; Hall, MD; Goldsborough, AS; Callaghan, R.; Gottesman, MM, Collateral sensitivity as a strategy against cancer multidrug resistance, Drug Resist. Updat., 15, 98-105 (2012) · doi:10.1016/j.drup.2012.03.002
[20] Pucci, C.; Martinelli, C.; Ciofani, G., Innovative approaches for cancer treatment: current perspectives and new challenges, Ecancermedicalscience, 13, 961 (2019) · doi:10.3332/ecancer.2019.961
[21] Rihan, FA; Lakshmanan, S.; Maurer, H., Optimal control of tumour-immune model with time-delay and immuno-chemotherapy, Appl. Math. Comput., 353, 147-165 (2019) · Zbl 1428.92052
[22] Rihan, FA; Rihan, NF, Dynamics of cancer-immune system with external treatment and optimal control, J. Cancer Sci. Ther., 8, 257-261 (2016) · doi:10.4172/1948-5956.1000423
[23] Sabir, S.; Raissi, N.; Serhani, M., Chemotherapy and immunotherapy for tumors: a study of quadratic optimal control, Int. J. Appl. Comput. Math., 6, 81 (2020) · Zbl 1444.92046 · doi:10.1007/s40819-020-00838-x
[24] Sbeity, H.; Younes, R., Review of optimization methods for cancer chemotherapy treatment planning, J. Comput. Sci. Syst. Biol., 8, 074-095 (2015) · doi:10.4172/jcsb.1000173
[25] Sethi, S.P., Thompson, G.L.: Optimal Control Theory: Applications to Management Science and Economics. Kluwer Academic Publishers (2000) · Zbl 0998.49002
[26] Takayama, A., Mathematical Economics (1974), Hinsdale: Dryden Press, Hinsdale · Zbl 0313.90008
[27] Tomasetti, C.; Levy, D., An elementary approach to modeling drug resistance in cancer, Math. Biosci. Eng., 7, 905-918 (2010) · Zbl 1259.92056 · doi:10.3934/mbe.2010.7.905
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.