×

Generalized graph splines and the universal difference property. (English) Zbl 07840556

Summary: We study the generalized graph splines introduced by Gilbert, Tymoczko, and Viel and focus on an attribute known as the Universal Difference Property (UDP). We prove that paths, trees, and cycles satisfy UDP. We explore UDP on graphs pasted at a single vertex and use Prüfer domains to illustrate that not every edge labeled graph satisfies UDP. We show that UDP must hold for any edge labeled graph over a ring \(R\) if and only if \(R\) is a Prüfer domain. Lastly, we prove that UDP is preserved by isomorphisms of edge labeled graphs.

MSC:

13Fxx Arithmetic rings and other special commutative rings
14Axx Foundations of algebraic geometry
05Cxx Graph theory

References:

[1] Altınok, S.; Sarıoğlan, S., Basis criteria for generalized spline modules via determinant, Discrete Math., 344, 2, 2021 · Zbl 1453.05111
[2] Altınok, S.; Sarıoğlan, S., Flow-up bases for generalized spline modules on arbitrary graphs, J. Algebra Appl., 20, 10, 2021 · Zbl 1476.05176
[3] Anders, K.; Crans, A.; Foster-Greenwood, B.; Mellor, B.; Tymoczko, J., Graphs admitting only constant splines, Pac. J. Math., 304, 2, 385-400, 2020 · Zbl 1481.13014
[4] K. Anders, A. Crans, B. Foster-Greenwood, B. Mellor, J. Tymoczko, Graph splines, Unpublished notes, 2017-2018.
[5] Bowden, N.; Hagen, S.; King, M.; Reinders, S., Bases and structure constants of generalized splines with integer coefficients on cycles, Jan 2015, arXiv e-prints, page
[6] Bowden, N.; Tymoczko, J., Splines mod m, Jan 2015, arXiv e-prints, page
[7] DiPasquale, M., Generalized splines and graphic arrangements, J. Algebraic Comb., 45, 1, 171-189, 2016 · Zbl 1364.13028
[8] Gilbert, S.; Polster, S.; Tymoczko, J., Generalized splines on arbitrary graphs, Pac. J. Math., 281, 2, 333-364, 2016 · Zbl 1331.05183
[9] Gilmer, R., Multiplicative Ideal Theory, Pure and Applied Mathematics, vol. 12, 1972 · Zbl 0248.13001
[10] Gjoni, E., Basis criteria for n-cycle integer splines, Bard College Senior Projects, Spring 2015
[11] Goresky, M.; Kottwitz, R.; MacPherson, R., Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math., 131, 1, 25-83, 1998 · Zbl 0897.22009
[12] Handschy, M.; Melnick, J.; Reinders, S., Integer generalized splines on cycles, Sept 2014, arXiv e-prints, page
[13] Jensen, Chr. U., On characterizations of Prüfer rings, Math. Scand., 13, 90-98, 1963 · Zbl 0131.27703
[14] Mahdavi, E. R., Integer generalized splines on the diamond graph, Bard College Senior Projects, Spring 2016
[15] Philbin, M.; Swift, L.; Tammaro, A.; Williams, D., Splines over integer quotient rings, May 2017, arXiv e-prints, page
[16] Rose, L.; Suzuki, J., Generalized integer splines on arbitrary graphs, Discrete Math., 346, 1, Article 113139 pp., 2023 · Zbl 1521.05176
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.