×

When does a three-dimensional Chern-Simons-Witten theory have a time reversal symmetry? (English) Zbl 1541.81143

Summary: In this paper, we completely characterize time-reversal-invariant three-dimensional Chern-Simons gauge theories with torus gauge group. At the level of the Lagrangian, toral Chern-Simons theory is defined by an integral lattice, while at the quantum level, it is entirely determined by a quadratic function on a finite Abelian group and an integer mod 24. We find that quantum time-reversally symmetric theories can be defined by classical Lagrangians defined by integral lattices which have self-perpendicular embeddings into a unimodular lattice. We find that the quantum toral Chern-Simons theory admits a time-reversal symmetry iff the higher Gauss sums of the associated modular tensor category are real. We conjecture that the reality of the higher Gauss sums is necessary and sufficient for a general non-Abelian Chern-Simons to admit quantum T-symmetry.

MSC:

81T32 Matrix models and tensor models for quantum field theory
58J28 Eta-invariants, Chern-Simons invariants
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
05C60 Isomorphism problems in graph theory (reconstruction conjecture, etc.) and homomorphisms (subgraph embedding, etc.)
11T24 Other character sums and Gauss sums

References:

[1] Aharony, O., Benini, F., Hsin, P.S., Seiberg, N.: Chern-Simons-matter dualities with \(SO\) and \(USp\) gauge groups. JHEP 02, 072 (2017). arXiv:1611.07874 · Zbl 1377.58018
[2] Anderson, G.; Moore, G., Rationality in conformal field theory, Commun. Math. Phys., 117, 441-450 (1988) · Zbl 0647.17012 · doi:10.1007/BF01223375
[3] Axelrod, S.; Della Pietra, S.; Witten, E., Geometric quantization of Chern-Simons gauge theory, J. Differ. Geom., 3, 3, 787-902 (1991) · Zbl 0697.53061
[4] Barkeshli, M., Bonderson, P., Cheng, M., Wang, Z.: Symmetry fractionalization, defects, and gauging of topological phases. Phys. Rev. B 100(11), 115-147 (2019). arXiv:1410.4540
[5] Barkeshli, M., Bonderson, P., Cheng, M., Jian, C.M., Walker, K.: Reflection and time reversal symmetry enriched topological phases of matter: path integrals, non-orientable manifolds, and anomalies. Commun. Math. Phys. 374(2), 1021-1124 (2019). arXiv:1612.07792 · Zbl 1439.82003
[6] Barrett, JW; Westbury, BW, Spherical categories, Adv. Math., 143, 357-375 (1999) · Zbl 0930.18004 · doi:10.1006/aima.1998.1800
[7] Belov, D., Moore, G.W.: Classification of Abelian spin Chern-Simons theories. arXiv:hep-th/0505235
[8] Berndt, BC; Evans, RJ; Williams, KS, Gauss and Jacobi Sums (1998), New York: Wiley, New York · Zbl 0906.11001
[9] Brochier, A., Jordan, D., Snyder, N.: On dualizability of braided tensor categories. Compos. Math. 157(3), 435-483 (2021). arXiv:1804.07538 · Zbl 1461.18014
[10] Bruillard, P., Galindo, C., Hagge, T., Ng, S.H., Plavnik, J., Rowell, E., Wang, Z.: Fermionic modular categories and the 16-fold way. J. Math. Phys. 58(4), 133-164 (2017). arXiv:1603.09294 · Zbl 1365.81098
[11] Bruillard, P., Galindo, C., Ng, S.H., Plavnik, J.Y., Rowell, E.C., Wang, Z.: Classification of super-modular categories by rank. Algebras Represent. Theory 23, 795-809 (2020). arXiv:1705.05293 · Zbl 1441.18019
[12] Capelli, A.; Itzykson, C.; Zuber, JB, The A-D-E classification of minimal and \(A_1^{(1)}\) conformal invariant theories, Commun. Math. Phys., 113, 1-26 (1987) · Zbl 0639.17008 · doi:10.1007/BF01221394
[13] Davydov, A., Mueger, M., Nikshych, D., Ostrik, V.: The Witt group of non-degenerate braided fusion categories. arXiv:1009.2117 · Zbl 1271.18008
[14] Davydov, A., Nikshych, D., Ostrik. V.: On the structure of the Witt group of braided fusion categories. arXiv:1109.5558 · Zbl 1345.18005
[15] Debray, A.: to appear
[16] Delmastro, D., Gomis, J.: Symmetries of Abelian Chern-Simons theories and arithmetic. JHEP 03, 006 (2021). arXiv:1904.12884 · Zbl 1461.81113
[17] Dijkgraaf, R.; Verlinde, EP, Modular invariance and the fusion algebra, Nucl. Phys. B Proc. Suppl., 5, 87-97 (1988) · Zbl 0958.81510 · doi:10.1016/0920-5632(88)90371-4
[18] Dijkgraaf, R.; Witten, E., Topological gauge theories and group cohomology, Commun. Math. Phys., 129, 2, 93-429 (1990) · Zbl 0703.58011 · doi:10.1007/BF02096988
[19] Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: On braided fusion categories I. Sel. Math. New Ser. 16, 1-119 (2021). arXiv:0906.0620 · Zbl 1201.18005
[20] Durfee, AH, Bilinear and quadratic forms on torsion modules, Adv. Math., 25, 2, 133-164 (1977) · Zbl 0354.10020 · doi:10.1016/0001-8708(77)90002-0
[21] Dyson, FF, The threefold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics, J. Math. Phys., 3, 1199-1215 (1962) · Zbl 0134.45703 · doi:10.1063/1.1703863
[22] Edie-Michell, C.: Auto-equivalences of the modular tensor categories of type \(A, B, C\) and \(G\). Adv. Math. 402 (2022). arXiv:2002.03220 · Zbl 1498.18021
[23] Eilenberg, S., MacLane, S.: Cohomology theory of Abelian groups and homotopy theory I, II, II, IV. Proc. Natl. Acad. Sci. U. S. A. 36, 36, 37, 38 (1950) · Zbl 0039.19002
[24] Elitzur, S.; Moore, GW; Schwimmer, A.; Seiberg, N., Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B, 326, 108-134 (1989) · doi:10.1016/0550-3213(89)90436-7
[25] Etingof, P.; Gelaki, S.; Nikshych, D.; Ostrik, V., Tensor Categories (2016), New York: American Mathematical Society, New York
[26] Etingof, P., Gelaki, S.: Descent and forms of tensor categories. Int. Math. Res. Not. 13, 3040-3063 (2012). arXiv:1102.0657 · Zbl 1246.18003
[27] Etingof, P.; Nikshych, D.; Ostrik, V., On fusion categories, Ann. Math., 646, 581-642 (2005) · Zbl 1125.16025 · doi:10.4007/annals.2005.162.581
[28] Falceto, F.; Gawedzki, K., Chern-Simons states at genus one, Commun. Math. Phys., 159, 549-580 (1994) · Zbl 0797.57011 · doi:10.1007/BF02099984
[29] Falceto, F.; Gawedzki, K., Elliptic Wess-Zumino-Witten model from elliptic Chern-Simons theory, Lett. Math. Phys., 38, 155-175 (1996) · Zbl 0854.53060 · doi:10.1007/BF00398317
[30] Fidkowski, L., Chen, X., Vishwanath, A.: Non-abelian topological order on the surface of a 3d topological superconductor from an exactly solved model. Phys. Rev. X(3), 041016 (2013). arXiv:1305.5851
[31] Fuchs, J., Schweigert, C., Valentino, A.: Bicategories for boundary conditions and for surface defects in 3-d TFT. Commun. Math. Phys. 321, 543-575 (2013). arXiv:1203.4568 · Zbl 1269.81169
[32] Freed, D.S.: On Wigner’s theorem. arXiv:1112.2133 · Zbl 1259.81033
[33] Freed, D.S., Hopkins, M.J., Lurie, J., Teleman, C.: Topological quantum field theories from compact Lie groups. arXiv:0905.0731 · Zbl 1232.57022
[34] Freed, D.S., Moore, G.W.: Twisted equivariant matter. Ann. Henri Poincare 14, 1927-2023 (2013). arXiv:1208.5055 · Zbl 1286.81109
[35] Freed, D.S., Teleman, C.: Gapped boundary theories in three dimensions. Commun. Math. Phys. 388(2), 845-892 (2021). arXiv:2006.10200 · Zbl 1479.81063
[36] Frohlich, J., Fuchs, J., Runkel, I., Schweigert, C.: Defect lines, dualities, and generalised orbifolds. arXiv:0909.5013
[37] Gawedzki, K.: Topological actions in two-dimensional quantum field thoeries. In: ’t Hooft, G. et al. (eds.) Non-perturbative Quantum Field Theory, pp. 101-142 . Plenum Press (1988)
[38] Gawedzki, K.; Kupiainen, A., SU(2) Chern-Simons theory at genus zero, Commun. Math. Phys., 135, 531-546 (1991) · Zbl 0722.53084 · doi:10.1007/BF02104120
[39] Geiko, R., Moore, G.W.: Dyson’s classification and real division superalgebras. JHEP 04, (2021). arXiv:2010.01675 · Zbl 1462.81104
[40] Johnson-Freyd, T.: (3+1)D topological orders with only a \({\mathbb{Z}}_2\)-charged particle. arXiv:2010.01675
[41] Henriques, A.G.: What Chern-Simons theory assigns to a point. Proc. Natl. Acad. Sci. 114(51), 13418-13423 (2017). arXiv:1503.06254 · Zbl 1416.57012
[42] Hopkins, MJ; Singer, IM, Quadratic functions in geometry, topology, and M theory, J. Differ. Geom., 70, 3, 329-452 (2005) · Zbl 1116.58018 · doi:10.4310/jdg/1143642908
[43] Huan, P.-H.S., Chen, J.-H., Gomes, P.R.S., Neupert, T., Chamon, C., Mudry, C.: Non-Abelian topological spin liquids from arrays of quantum wires or spin chains. Phys. Rev. B 93, 20 (2016). arXiv:1601.01094
[44] Hsin, P.S., Seiberg, N.: Level/rank duality and Chern-Simons-matter theories. JHEP 09, 095 (2016). arXiv:1607.07457 · Zbl 1390.81214
[45] Joyal, A.; Street, R., Braided tensor categories, Adv. Math., 102, 1, 20-78 (1993) · Zbl 0817.18007 · doi:10.1006/aima.1993.1055
[46] Kaidi, J., Komargodski, Z., Ohmori, K., Seifnashri, S., Shao, S.H.: Higher central charges and topological boundaries in 2+1-dimensional TQFTs. arXiv:2107.13091
[47] Kapustin, A., Saulina, N.: Topological boundary conditions in abelian Chern-Simons theory. Nucl. Phys. B 845, 393-435 (2011). arXiv:1008.0654 · Zbl 1207.81060
[48] Kapustin, A., Saulina, N.: Surface operators in 3d topological field theory and 2d rational conformal field theory. arXiv:1012.0911 · Zbl 1248.81206
[49] Kawauchi, A.; Kojima, S., Algebraic classification of linking pairings on 3-manifolds, Math. Ann., 253, 29-42 (1980) · doi:10.1007/BF01457818
[50] Kneser, MV; Dieter, P., Quadratische Formen und Verschlingungsinvarianten von Knoten, Math. Z., 58, 1, 376-384 (1953) · Zbl 0050.39801 · doi:10.1007/BF01174153
[51] Kong, L.: Anyon condensation and tensor categories. Nucl. Phys. B 886, 436-482 (2014). arXiv:1307.8244 · Zbl 1325.81156
[52] Kong, L., Zhang, Z.H.: An invitation to topological orders and category theory. arXiv:2205.05565
[53] Kohno, T.; Takata, T., Level-rank duality of Witten’s 3-manifold invariants, Prog. Algebraic Combin., 24, 243-264 (1996) · Zbl 0860.57013 · doi:10.2969/aspm/02410243
[54] Lee, Y., Tachikawa, Y.: A study of time reversal symmetry of abelian anyons. JHEP 07, 090 (2018). arXiv:1805.02738 · Zbl 1395.83109
[55] Levin, M., Stern, A.: Classification and analysis of two-dimensional abelian fractional topological insulators. Phys. Rev. B 86, 115-131 (2012). arXiv:1205.1244
[56] Mignard, M., Schauenburg, P.: Modular categories are not determined by their modular data. Lett. Math. Phys. 111(3), 1-9 (2017). arXiv:1708.02796 · Zbl 1460.18018
[57] Miranda, R., Nondegenerate symmetric bilinear forms on finite abelian 2-groups, Trans. Am. Math. Soc., 284, 535-542 (1984) · Zbl 0512.10014 · doi:10.1090/S0002-9947-1984-0743731-1
[58] Miranda, R.: Embeddings of integral quadratic forms · Zbl 0594.10012
[59] Moore, GW; Seiberg, N., Classical and quantum conformal field theory, Commun. Math. Phys., 123, 177 (1989) · Zbl 0694.53074 · doi:10.1007/BF01238857
[60] Moore, G.W., Seiberg, N.: Lectures on RCFT. In: Green, M. et al. (eds.) Strings ’89, Proceedings of the Trieste Spring School on Superstrings, 3-14 April 1989. World Scientific (1990); Also in Lee, H.C. (eds.) Physics, Geometry and Topology. NATO ASI Series, vol. 238. Springer, Boston, MA · Zbl 0985.81739
[61] Moore, GW; Seiberg, N., Naturality in conformal field theory, Nucl. Phys. B, 313, 16-40 (1989) · doi:10.1016/0550-3213(89)90511-7
[62] Mueger, M., From subfactors to categories and topology II. The quantum double of tensor categories and subfactors, J. Pure Appl. Algebra, 180, 159-219 (2003) · Zbl 1033.18003 · doi:10.1016/S0022-4049(02)00248-7
[63] Naculich, SG; Riggs, HA; Schnitzer, HJ, Group-level duality in WZW models and Chern-Simons theory, Phys. Lett. B, 246, 3, 417-422 (1990) · doi:10.1016/0370-2693(90)90623-E
[64] Neupert, T., Santoz, L., Ryu, S., Chamon, C., Mudry, C.: Fractional topological liquids with time-reversal symmetry and their lattice realization. Phys. Rev. B 84(16) (2011). arXiv:1106.3989
[65] Neupert, T., Santoz, L., Ryu, S., Chamon, C., Mudry, C.: Time-reversal symmetric hierarchy of fractional incompressible liquids. Phys. Rev. B 84(16) (2011). arXiv:1108.2440
[66] Neupert, T., Santoz, L., Ryu, S., Chamon, C., Mudry, C.: Wire deconstructionism of two-dimensional topological phases. Phys. Rev. B 90(20) (2014). arXiv:1403.0953
[67] Ng, SH; Schauenburg, P., Frobenius-Schur indicators and exponents of spherical categories, Adv. Math., 70, 1, 34-71 (2007) · Zbl 1138.16017 · doi:10.1016/j.aim.2006.07.017
[68] Ng, S.H., Schopieray, A., Wang, Y.: Higher Gauss sums of modular categories. Sel. Math. New Ser. 25(4), 329-452 (2019). arXiv:1812.11234 · Zbl 1430.18015
[69] Ng, S.H., Rowell, E., Wang, Y., Zhang, Q.: Higher central charges and Witt groups. Adv. Math. 404 (2022). arXiv:2002.03570 · Zbl 1496.18019
[70] Nikulin, V.V.: Integral symmetric bilinear forms and some of their applications. Math. USSR-Izvestiya 14 (1980) · Zbl 0427.10014
[71] Ostrik, V., Sun, M.: Level-rank duality via tensor categories. Commun. Math. Phys. 326, 49-61 (2014). arXiv:1208.5131 · Zbl 1371.18006
[72] Rowell, E., Ruan, Y., Wang, Y.: The Witt classes of \(SO(2r)_{2r}\). arXiv:2107.06746 · Zbl 1502.18036
[73] Rowell, E., Wang, Z.: Mathematics of topological quantum computing. Bull. Am. Math. Soc. 55(2), 183-238 (2017). arXiv:1705.06206 · Zbl 1437.81005
[74] Sanford, S.: Fusion categories over non-algebraically closed fields. Ph.D. thesis
[75] Seiberg, N., Witten, E.: Gapped boundary phases of topological insulators via weak coupling. PTEP 2016(12) (2016). arXiv:1602.04251 · Zbl 1361.81151
[76] Seifert, H., Verschlingungsinvarianten, Sitzungsber. Preuß. Akad. Wiss., 70, 26-29, 811-828 (1933) · JFM 59.1238.02
[77] Sertöz, A., Which singular K3 surfaces cover an Enriques surface, Proc. Am. Math. Soc., 133, 1, 43-50 (2005) · Zbl 1049.14032 · doi:10.1090/S0002-9939-04-07666-X
[78] Stirling, S.D.: Abelian Chern-Simons theory with toral gauge group, modular tensor categories, and group categories. arXiv:0807.2857
[79] Taylor, L.R.: Gauss sums in algebra and topology. arXiv:2208.06319
[80] Wall, CTC, Quadratic forms on finite groups, and related topics, Topology, 2, 281-298 (1963) · Zbl 0215.39903 · doi:10.1016/0040-9383(63)90012-0
[81] Wang, C., Senthil, T.: Boson topological insulators: a window into highly entangled quantum phases. Phys. Rev. B 87(23) (2013). arXiv:1302.6234
[82] Wang, L., Wang, Z.: In and around Abelian anyon models. J. Phys. A 53(50) (2020). arXiv:2004.12048 · Zbl 1519.81499
[83] Wigner, EP, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (1959), New York: Academic Press Inc., New York · Zbl 0085.37905
[84] Witten, E., Quantum field theory and the Jones polynomial, Commun. Math. Phys., 121, 3, 351-399 (1989) · Zbl 0667.57005 · doi:10.1007/BF01217730
[85] Witten, E.: SL(2,Z) action on three-dimensional conformal field theories with Abelian symmetry. arXiv:hep-th/0307041 · Zbl 1160.81457
[86] Yetter, D.: Framed tangles and a theorem of Deligne on braided deformations of Tannakian categories. In: Deformation Theory and Quantum Groups with Applications to Mathematical Physics, pp. 325-349 (1992) · Zbl 0812.18005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.