×

Shapley value of homogeneous cooperative games. (English. Russian original) Zbl 1519.91022

Comput. Math. Math. Phys. 63, No. 3, 450-465 (2023); translation from Zh. Vychisl. Mat. Mat. Fiz. 63, No. 3, 474-490 (2023).
The author considered a special linear operator (Shapley value). The main interest of the results are on computational aspects. He presented integral representations of the Shapley value considering that the game has a finite or an infinite number of players. a new rule is derived as products of non-atomic probability measures. The proposed approach to the study of the Shapley value of homogeneous cooperative games is the systematic use of extensions of the considered polynomial set functions to the corresponding measures on the symmetric powers of the original measurable spaces.

MSC:

91A12 Cooperative games
Full Text: DOI

References:

[1] Rosenmüller, J., Kooperative Spiele und Märkte (1971), Berlin: Springer-Verlag, Berlin · Zbl 0235.90070 · doi:10.1007/978-3-642-80633-9
[2] Vasil’ev, V. A., The Shapley functional and the polar form of homogeneous polynomial games, Sib. Adv. Math., 8, 109-150 (1998) · Zbl 0915.90283
[3] Aumann, R. J.; Shapley, L. S., Values of Non-Atomic Games (1974), Princeton: Princeton Univ. Press, Princeton · Zbl 0311.90084
[4] Dehez, P., On Harsanyi dividends and asymmetric values, Int. Game Theory Rev., 19, 1-36 (2017) · Zbl 1415.91026 · doi:10.1142/S0219198917500128
[5] Vasil’ev, V. A., On the core and Shapley value for regular polynomial games, Sib. Math. J., 63, 65-78 (2022) · Zbl 1482.91013 · doi:10.1134/S0037446622010050
[6] Marinacci, M.; Montrucchio, L., Stable cores of large games, Int. J. Game Theory, 33, 189-213 (2005) · Zbl 1128.91006 · doi:10.1007/s001820400191
[7] Vulikh, B. Z., Introduction to the Theory of Partially Ordered Spaces (1967), Groningen: Noordhoff, Groningen · Zbl 0186.44601
[8] Kantorovich, L. V.; Akilov, G. P., Functional Analysis (1982), Oxford: Pergamon, Oxford · Zbl 0484.46003
[9] Aliprantis, C. D.; Border, K. C., Infinite Dimensional Analysis (1994), Berlin: Springer-Verlag, Berlin · Zbl 0839.46001 · doi:10.1007/978-3-662-03004-2
[10] Vasil’ev, V. A., Nonadditive integration and some solutions of cooperative games, Autom. Remote Control, 83, 635-648 (2022) · Zbl 1496.91014 · doi:10.1134/S0005117922040099
[11] Vasil’ev, V. A., Approximation, Optimization, and Mathematical Economics (2001), Heidelberg: Physica-Verlag, Heidelberg · Zbl 0970.00036
[12] Vasil’ev, V. A., Polar representation of Shapley value: Nonatomic polynomial games, Contrib. Game Theory Manage., 6, 434-446 (2013) · Zbl 1289.91017
[13] V. A. Vasil’ev, “General characterization of polynomial set functions,” Optimizatsiya, No. 14, 101-123 (1974).
[14] V. A. Vasil’ev, “On a space of nonadditive set functions,” Optimizatsiya, No. 16, 99-120 (1975). · Zbl 0332.28004
[15] Hille, E.; Phillips, R., Functional Analysis and Semigroups (1957), Providence, R.I.: Am. Math. Soc., Providence, R.I. · Zbl 0078.10004
[16] V. A. Vasil’ev, “Shapley vector for games of bounded polynomial variation,” Optimizatsiya, No. 17, 5-26 (1975).
[17] Lyapunov, A. A., Issues of Set Theory and Function Theory (1970), Moscow: Nauka, Moscow
[18] Vasil’ev, V. A., On a class of imputations in cooperative games, Sov. Math. Dokl., 23, 53-57 (1981) · Zbl 0474.90089
[19] Vasil’ev, V. A., Russian Contributions to Game Theory and Equilibrium Theory (2006), Berlin: Springer-Verlag, Berlin · Zbl 1089.00011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.