×

Infinity-Laplacian type equations and their associated Dirichlet problems. (English) Zbl 1442.35124

Summary: In this paper, we study the Dirichlet problem associated with infinity-Laplacian type equations that may exhibit anisotropic character. We identify a broad class of nonlinearities for which the problem may or may not admit viscosity solutions for any continuous boundary data. We also discuss comparison with Finsler cones, which may be of independent interest.

MSC:

35J60 Nonlinear elliptic equations
35J70 Degenerate elliptic equations
35J75 Singular elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI

References:

[1] Armstrong, SN; Smart, CK., An easy proof of Jensen’s theorem on the uniqueness of infinity harmonic functions, Calc Var Partial Differ Equ, 37, 3-4, 381-384 (2010) · Zbl 1187.35104 · doi:10.1007/s00526-009-0267-9
[2] Armstrong, SN; Smart, CK., A finite difference approach to the infinity Laplace equation and tug-of-war games, Trans Amer Math Soc, 364, 2, 595-636 (2012) · Zbl 1239.91011 · doi:10.1090/S0002-9947-2011-05289-X
[3] Aronsson, G.; Crandall, MG; Juutinen, P., A tour of the theory of absolutely minimizing functions, Bull Amer Math Soc, 41, 439-505 (2004) · Zbl 1150.35047 · doi:10.1090/S0273-0979-04-01035-3
[4] Bhattacharya, T., An elementary proof of the Harnack inequality for non-negative infinity-superharmonic functions, Electron J Differ Equ, 2001, 44, 1-8 (2001) · Zbl 0966.35052
[5] Crandall, MG.A visit with the ∞-Laplace equation. In: Calculus of variations and nonlinear partial differential equations. Lecture Notes in Math. Vol. 1927, p. 75-122, Berlin: Springer.2008. · Zbl 1357.49112
[6] Crandall, MG; Evans, LC; Gariepy, RF., Optimal Lipschitz extensions and the infinity-Laplacian, Calc Var Partial Differ Equ, 13, 2, 123-139 (2001) · Zbl 0996.49019
[7] Evans, LC; Smart, CK., Everywhere differentiability of infinity harmonic functions, Calc Var Partial Differ Equ, 42, 1-2, 289-299 (2011) · Zbl 1251.49034 · doi:10.1007/s00526-010-0388-1
[8] Lindqvist, P.; Manfredi, J., The Harnack inequality for infinity-harmonic functions, Electron J Differ Equ, 1995, 4, 1-5 (1995) · Zbl 0818.35033
[9] Lu, G.; Wang, P., Inhomogeneous infinity Laplace equation, Adv Math, 217, 4, 1838-1868 (2008) · Zbl 1152.35042 · doi:10.1016/j.aim.2007.11.020
[10] Lu, G.; Wang, P., A PDE perspective of the normalized infinity Laplacian, Comm Partial Differ Equ, 33, 10-12, 1788-1817 (2008) · Zbl 1157.35388 · doi:10.1080/03605300802289253
[11] Lu, G.; Wang, P., Infinity Laplace equation with non-trivial right-hand side, Electron J Differ Equ, 2010, 77, 1-12 (2010) · Zbl 1194.35194
[12] Savin, O., \(####\) regularity for infinity harmonic functions in two dimensions, Arch Ration Mech Anal, 176, 3, 351-361 (2005) · Zbl 1112.35070 · doi:10.1007/s00205-005-0355-8
[13] Bhattacharya, T.; Mohammed, A., On solutions to Dirichlet problems involving the infinity-Laplacian, Adv Calc Var, 4, 4, 445-487 (2011) · Zbl 1232.35056 · doi:10.1515/acv.2010.019
[14] Bhattacharya, T.; Mohammed, A., Inhomogeneous Dirichlet problems involving the infinity-Laplacian, Adv Differ Equ, 17, 3-4, 225-266 (2012) · Zbl 1258.35094
[15] Aronsson, G., Minimization problems for the functional \(####\), Ark Mat, 6, 33-53 (1965) · Zbl 0156.12502 · doi:10.1007/BF02591326
[16] Aronsson, G., Minimization problems for the functional \(####\). II, Ark Mat, 6, 409-431 (1966) · Zbl 0156.12502 · doi:10.1007/BF02590964
[17] Aronsson, G., Extension of functions satisfying Lipschitz conditions, Ark Mat, 6, 551-561 (1967) · Zbl 0158.05001 · doi:10.1007/BF02591928
[18] Aronsson, G., On the partial differential equation \(####\), Ark Mat, 7, 395-425 (1968) · Zbl 0162.42201 · doi:10.1007/BF02590989
[19] Aronsson, G., Minimization problems for the functional \(####\). III, Ark Mat, 7, 509-512 (1969) · Zbl 0181.11902 · doi:10.1007/BF02590888
[20] Jensen, R., Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch Rational Mech Anal, 123, 1, 51-74 (1993) · Zbl 0789.35008 · doi:10.1007/BF00386368
[21] Crandall, MG; Lions, P., Viscosity solutions of Hamilton-Jacobi equations, Trans Amer Math Soc, 277, 1, 1-42 (1983) · Zbl 0599.35024 · doi:10.1090/S0002-9947-1983-0690039-8
[22] Evans, LC., On solving certain nonlinear partial differential equations by accretive operator methods, Israel J Math, 36, 3, 225-247 (1980) · Zbl 0454.35038 · doi:10.1007/BF02762047
[23] Peres, Y.; Schramm, O.; Sheffield, S., Tug-of-war and the infinity-Laplacian, J Amer Math Soc, 22, 1, 167-210 (2009) · Zbl 1206.91002 · doi:10.1090/S0894-0347-08-00606-1
[24] Barron, EN; Evans, LC; Jensen, R., The infinity Laplacian, Aronssons equation and their generalizations, Trans Amer Math Soc, 360, 1, 77-101 (2008) · Zbl 1125.35019 · doi:10.1090/S0002-9947-07-04338-3
[25] Wang, H.; He, Y., Existence of solutions of a normalized F-Infinity Laplacian equation, Electron J Differ Equ, 2014, 109, 1-17 (2014) · Zbl 1297.35080
[26] Birindelli, I.; Capuzzo Dolcetta, I.; Vitolo, A., ABP and global Hölder estimates for fully nonlinear elliptic equations in unbounded domains, Commun Contemp Math, 18, 4 (2016) · Zbl 1344.35036 · doi:10.1142/S0219199715500753
[27] Imbert, C., Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations, J Differ Equ, 250, 3, 1553-1574 (2011) · Zbl 1205.35124 · doi:10.1016/j.jde.2010.07.005
[28] Bao, D.; Chern, S-S; Shen, Z., An introduction to Riemann-Finsler Geometry (2000), New York: Springer-Verlag, New York · Zbl 0954.53001
[29] Cianchi, A.; Salani, P., Overdetermined anisotropic elliptic problems, Math Ann, 345, 4, 859-881 (2009) · Zbl 1179.35107 · doi:10.1007/s00208-009-0386-9
[30] Crasta, C.; Malusa, A., The distance function from the boundary in a Minkowski space, Trans Amer Math Soc, 359, 12, 5725-5759 (2007) · Zbl 1132.35005 · doi:10.1090/S0002-9947-07-04260-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.